
5. Continuous Random Variables

Continuous random variables can take any value
in an interval. They are used to model physical
characteristics such as time, length, position, etc.

Examples

(i) Let X be the length of a randomly selected
telephone call.

(ii) Let X be the volume of coke in a can
marketed as 12oz.

Remarks

• A continuous variable has infinite precision,
hence P(X = x) = 0 for any x.

• In this case, the p.m.f. will provide no useful
information.
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Definition. X is a continuous random
variable if there is a function f(x) so that for
any constants a and b, with −∞ ≤ a ≤ b ≤ ∞,

P(a ≤ X ≤ b) =
∫ b

a

f(x) dx (1)

• For δ small, P(a ≤ X ≤ a + δ) ≈ f(a) δ.

• The function f(x) is called the probability
density function (p.d.f.).

• For any a,
P(X = a) = P(a ≤ X ≤ a) =

∫ a

a
f(x) dx = 0.

• A discrete random variable does not have a
density function, since if a is a possible value of a
discrete RV X, we have P(X = a) > 0.

• Random variables can be partly continuous and
partly discrete.
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The following properties follow from the axioms:

• ∫∞
−∞ f(x) dx = 1.

• f(x) ≥ 0.

Example. For some constant c, the random
variable X has probability density function

f(x) =





cxn 0 < x < 1

0 otherwise

Find (a) c and (b) P(X > x) for 0 < x < 1.
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Discussion problem. Let X be the duration of
a telephone call in minutes and suppose X has
p.d.f. f(x) = c · e−x/10 for x ≥ 0. Find c, and also
find the chance that the call lasts less than 5
minutes.
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Cumulative Distribution Function (c.d.f.)

• The c.d.f. of a continuous RV is defined exactly
the same as for discrete RVs:

F (x) = P(X ≤ x) = P (X ∈ (−∞, x])

• Hence F (x) =
∫ x

−∞ f(x)dx, and differentiating
both sides we get

dF
dx = f(x)

Example. Suppose the lifetime, X, of a car
battery has P(X > x) = 2−x. Find the p.d.f. of
X.
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Expectation of Continuous RVs

Definition. For X a continuous RV with p.d.f.
f(x)

E(X) =
∫∞
−∞ x · f(x)dx

• Intuitively, this comes from the discrete case by
replacing

∑
with

∫
and p(xi) with f(x)dx.

• We can think of a continuous distribution as
being approximated by a discrete distribution on
a lattice . . . ,−2δ,−δ, 0, δ, 2δ, . . . for small δ.

Exercise. Let X be a continuous RV and let Xδ

be a discrete RV approximating X on the lattice
. . . ,−2δ,−δ, 0, δ, 2δ, . . . for small δ. Sketch a p.d.f.
f(x) for X and the corresponding p.m.f p(x) for
Xδ, paying attention to the scaling on the y-axis.
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Example. Suppose X has p.d.f.

f(x) =





(1− x2)(3/4) −1 ≤ x ≤ 1

0 else

Find the expected value of X.

Solution.

Note. Similarly to discrete RVs, the expected
value is the balancing point of the graph of the
p.d.f., and so if the p.d.f. is symmetric then the
expected value is the point of symmetry. A sketch
of the p.d.f. quickly determines the expected
value in this case:
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Example. The density function of X is

f(x) =





a + bx2 0 ≤ x ≤ 1

0 else

If E(X) = 3/5, find a and b.

Solution.

8



Proposition 1. For X a non-negative
continuous RV, with p.d.f. f and c.d.f. F ,

E(X) =
∫ ∞

0

P(X > x)dx =
∫ ∞

0

(1− F (x)) dx

Proof.
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Proposition 2. For X a continuous RV with
p.d.f. f and any real-valued function g

E [g(X)] =
∫ ∞

−∞
g(x)f(x)dx

Proof.
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Example. A stick of length 1 is split at a point
U that is uniformly distributed over (0, 1).
Determine the expected length of the piece that
contains the point p, for 0 ≤ p ≤ 1.

Solution.
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Variance of Continuous RVs

• The definition is the same as for discrete RVs:

Var(X) = E
[(

X − E(X)
)2

]

• The basic properties are also the same

Var(X) = E(X2)− (E(X))2

E(aX + b) = aE(X) + b

Var(aX + b) = a2Var(X)

Example. If E(X) = 1 and Var(X) = 5, find

(a) E
[
(2 + X)2

]

(b) Var(4 + 3X)
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The Uniform Distribution

Definition: X has the uniform distribution
on [0, 1] (and we write X ∼ Uniform[0, 1] or just
X ∼ U[0, 1]) if X has p.d.f.

f(x) =





1 0 ≤ x ≤ 1

0 else

• This is what people usually mean when they
talk of a “random” number between 0 and 1.

• Each interval of length δ in [0, 1] has equal
probability:

∫ x+δ

x
f(y)dy = δ

• The chance of X falling into an interval is equal
to the length of the interval.
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Generalization: X has the uniform
distribution on [a, b] (i.e. X ∼ U[a, b]) if X has
p.d.f.

f(x) =





1/(b− a) a ≤ x ≤ b

0 else

Proposition. If Z ∼ U[0, 1], then
(b− a)Z + a ∼ U[a, b].

Proof.
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Example. Let X ∼ U[a, b]. Show that

E(X) = a+b
2 and Var(X) = (b−a)2

12 ,

(a) by standardizing (i.e., using the previous
proposition);

(b) directly (by brute force).
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Example. Your company must make a sealed
bid for a construction project. If you succeed in
winning the contract (by having the lowest bid),
then you plan to pay another firm $100, 000 to do
the work. If you believe that the maximum bid
(in thousands of dollars) of the other
participating companies can be modeled as being
the value of a random variable that is uniformly
distributed on (70, 140), how much should you bid
to maximize your expected profit?

Solution.
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Discussion problem. Suppose X ∼ U [5, 10].
Find the probability that X2 − 5X − 6 is greater
than zero.

Solution.
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The Standard Normal Distribution

Definition: Z has the standard normal
distribution if it has p.d.f.

f(x) = 1√
2π

e−x2/2

• f(x) is symmetric about x = 0, so E(X) = 0.

• Var(X) = 1. Check this, using integration by
parts:
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The Normal Distribution

Definition. If X has density

f(x) =
1√

2πσ2
exp

{−(x− µ)2

2σ2

}

then X has the normal distribution, and we
write X ∼ N(µ, σ2).

• E(X) = µ and Var(X) = σ2.

• If Z ∼ N(0, 1) then Z is standard normal.

Proposition. Let Z ∼ N(0, 1) and set
X = µ + σZ for constants µ and σ. Then,
X ∼ N(µ, σ2).

Proof.
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Exercise. Check that the standard normal
density integrates to 1.

Trick. By changing to polar coordinates, show
( ∫ ∞

−∞
exp{−x2/2} dx

)2

= 2π.

Solution.

20



Calculating with the Normal Distribution

• There is no closed form solution to the integral∫ b

a
1√
2π

e−x2/2dx, so we rely upon computers (or
tables).

• The c.d.f. of the standard normal distribution is

Φ(z) =
∫ z

−∞

1√
2π

e−x2/2dx.

This is tabulated on page 201 of Ross.

Example. Find
∫ 2

−1
1√
2π

e−x2/2dx.

Solution.
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Standardization

If we wish to find P(a ≤ X ≤ b) where
X ∼ N(µ, σ2), we write X = µ + σZ. Then,

P(a ≤ X ≤ b) = P
(

a− µ

σ
≤ Z ≤ b− µ

σ

)

= Φ
(

b− µ

σ

)
− Φ

(
a− µ

σ

)

Example. Suppose the weight of a new-born
baby averages 8 lbs, with a SD of 1.5 lbs. If
weights are normally distributed, what fraction of
babies are between 7 and 10 pounds?

Solution.
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Example continued. For what value of x does
the interval [8− x, 8 + x] include 95% of
birthweights?

Solution.
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Example. Suppose that the travel time from
your home to your office is normally distributed
with mean 40 minutes and standard deviation 7
minutes. If you want to be 95% percent certain
that you will not be late for an office appointment
at 1 p.m., What is the latest time that you should
leave home?

Solution.
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The Normal Approximation

to the Binomial Distribution

• If X ∼ Binomial(n, p) and n is large enough,
then X is approximately N(np, np(1− p)).

• Rule of thumb: this approximation is
reasonably good for np(1− p) > 10

• P(X = k) ≈ P(k − 1/2 < Y < k + 1/2) where
Y ∼ N(np, np(1− p)).

• Note: P(X≤ k) is usually approximated by
P(Y < k + 1/2).
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Example. I toss 1000 coins. Find the chance
(approximately) that the number of heads is
between 475 and 525, inclusive.

Solution.
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Example. The ideal size of a first-year class at a
particular college is 150 students. The college,
knowing from past experience that on the average
only 30 percent of those accepted for admission
will actually attend, uses a policy of approving
the applications of 450 students. Compute the
probability that more than 150 first-year students
attend this college.

Solution.
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The Exponential Distribution

Definition. X has the exponential
distribution with parameter λ if it has density

f(x) =





λe−λx x ≥ 0

0 x < 0

• We write X ∼ Exponential(λ).

• E(X) = 1/λ and Var(X) = 1/λ2.

• F (x) = 1− e−λx
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Example. The amount of time, in hours, that a
computer functions before breaking down is a
continuous random variable with probability
density function given by

f(x) =





λe−x/100 x ≥ 0

0 x < 0

Find the probability that

(a) the computer will break down within the first
100 hours;

(b) given that it it still working after 100 hours, it
breaks down within the next 100 hours.

Solution.
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The Memoryless Property of Exponential RVs

• The exponential distribution is the continuous
analogue of the geometric distribution (one has
an exponentially decaying p.m.f., the other an
exponentially decaying p.d.f.).

• Suppose that X ∼ Exponential(λ). Then

P(X > t + s|X > t) = e−λs = P(X > s).

Check this:

• This is an analog for continuous random
variables of the memoryless property that we
saw for the geometric distribution.
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Example. At a certain bank, the amount of time
that a customer spends being served by a teller is
an exponential random variable with mean 5
minutes. If there is a customer in service when
you enter the bank, what is the probability that
he or she will still be with the teller after an
additional 4 minutes?

Solution.
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Example. Suppose X ∼ U[0, 1] and Y = − ln(X)
(so Y > 0). Find the p.d.f. of Y .

Solution.

Note. This gives a convenient way to simulate
exponential random variables.
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• Calculations similar to the previous example are
required whenever we want to find the
distribution of a function of a random
variable

Example. Suppose X has p.d.f. fX(x) and
Y = aX + b for constants a and b. Find the p.d.f.
fY (y) of Y .

Solution.
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Example. A stick of length 1 is split at a point
U that is uniformly distributed over (0, 1).
Determine the p.d.f. of the longer piece.

Solution.
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