
2. Combinatorics: the systematic
study of counting

The Basic Principle of Counting (BPC)

Suppose r experiments will be performed. The
1st has n1 possible outcomes, for each of these
outcomes there are n2 possibilities for the 2nd,
etc.

• The total # of outcomes for all r experiments
combined is n1 × n2 × · · · × nr

• The BPC tells us how to count leaves on a tree.

Example 1. Draw the tree for r = 3, n1 = 3,
n2 = n3 = 2.
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Example 2. (k-tuples)

• An ordered list of k elements (z1, . . . , zk) is
called a k-tuple.

• By BPC, if there are n1 choices for z1, n2

choices for z2, etc., then the number of possible
k-tuples is n1 × n2 × · · · × nk.

Example 3. If license plates have numbers in
the first three places, followed by three letters,
how many different plates are possible?

Example 4. (k-tuples without repetition)

• The BPC can also be used to count the number
of such license plates if no letter or number can
be repeated:
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Example 5. (Sampling with replacement)

• A box contains n balls labeled 1, . . . , n. We
draw a ball at random, note its number, and
then replace it. Repeating k times gives a list
(i1, . . . , ik).

• The sample space for this experiment is
S = {all k-tuples with entries 1, . . . , n}
which has #S = nk.

• If we assume all nk outcomes are equally likely,
we say we have a random sample of size k

drawn with replacement from a population
of size n.

Example 6. Rolling a die k times gives a
random sample with replacement for n = 6.
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Example 7. A die is rolled four times. What is

the probability of getting at least one 6 ?

Solution. Whenever you see “at least one”
think about the complement “none”

Note. What is wrong with reasoning as follows:

Let Ei = { 6 on roll i}, and set E =
⋃4

i=1 Ei.
Then, P(E) = P(

⋃4
i=1 Ei) = 4× 1

6 = 2/3.
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Sampling without replacement

• A box contains n balls labeled 1, . . . , n. If we
draw k times, without replacing balls between
draws, the outcome can still be written as a
k-tuple (i1, . . . , ik) with ij being the outcome of
draw j.

• What is the sample space? Use the BPC to
count this set.

• Recall that n! (n factorial) is defined by
n! = n× (n− 1)× (n− 2)× · · · × 1, when n is a
positive integer. We also define 0! = 1.

5



Example: 3 balls are drawn at random from an
urn containing 8 red balls and 12 black balls. The
draws are made without replacement. Find the
chance that all 3 balls drawn are black.

Solution:
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Permutations and Combinations

• A permutation is an ordering of a set of
objects. Suppose the objects are labeled
1, 2, . . . , n, then an ordering is an n-tuple with
no repeats. This is like sampling n times without
replacement, so

# permutations = n(n− 1) . . . 1 = n!

• A combination is an unordered selection of
objects. Write

(
n
k

)
for the number of ways to

choose k objects from n, which we call “n choose
k.” The BPC can be used to derive the formula
(

n

k

)
=

n!
(n− k)! k!

Proof:
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• Counting problems may involve breaking down
the enumeration into a sequence of easier
problems. Formally, this involves the BPC.

Example. How many committees with 2
Republican, 2 Democrat and 3 Independent
senators can be formed from a group of 5R, 6D

and 4I?

Solution.
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Example: Poker. A poker hand consists of 5
cards dealt from a shuffled deck of 52. So the
number of possible hands is

(
52
5

)
= 2, 598, 960, and

they are all equally likely. Find the chance of ...

(i) A pair (two cards of the same rank, all others
of different ranks).

(ii) A straight (cards form a sequence and not all
of the same suit).
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Example: The birthday problem.

If 25 strangers are in a room, what is the chance
that at least two of them share a birthday?
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Example. An instructor gives her class 10
questions and promises to select 5 at random for
hte final. What is the chance that a student who
can solve 7 of them will be able to do the whole
final?

Solution.
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Discussion problem: Blackjack. Find the
probability that two cards dealt from a shuffled
deck form a blackjack (an A together with a 10,
J, Q or K).

Solution. Explain a principled method, as well
as looking for the right answer!
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Permutations with indistinguishable objects

• Suppose we want to count the number of
arrangements of the letters STATISTICS. We
use a method similar to the proof of the formula
for

(
n
k

)
, proceeding as follows:

• First, suppose the letters are distinguishable, by
adding labels. Then the arrangements can be
counted directly:

• Next, count the labeled arrangements a
different way, by adding labels to the unlabeled
arrangements:
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Discussion Problem. Delegates from 10
countries are to be seated in a row. How many
arrangements are possible if the American
delegate must sit next to the Brazilian, and the
Chinese delegate must not sit next to the Dutch?

Solution. Arrange blocks of objects and then
label the blocks.

Hint. Consider counting complementary events
(“must sit next to” versus “must not sit next to”).
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Example. How many possible paths are there
from A to B on the grid below, if at each step you
can go one step up or one step to the right?

A

B

r r r r r
r r r r r
r r r r r
r r r r r

Solution.

15



Ordered versus unordered selections

• Roll 5 dice. Let {1, 2, 3, 4, 5} be the event that
one die shows 1 , one of them shows 2 , etc.
This event is written as an unordered set.

• If the dice are indistinguishable, we can only
observe unordered outcomes.

• Now suppose the dice are colored red, white,
blue, green, yellow. Let (1, 2, 3, 4, 5) correspond
to red showing 1 , white showing 2 , etc. This
event is written as an ordered k-tuple.

• Compute the following:

P
[
(1, 2, 3, 4, 5)

]
=

P
[{1, 2, 3, 4, 5}] =

P
[
(5, 5, 5, 5, 5)

]
=

P
[{5, 5, 5, 5, 5}] =

Note. When sampling with replacement, not all
unordered sets are equally likely!
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Example. 8 castles (i.e., rooks) are randomly
placed on a chess board. Find the chance that no
rook can capture another (i.e., no two rooks are
on the same rank or file).

Solution 1. Label the rooks R1, R2, . . . , R8 and
the squares as 1, . . . , 64.

• Define S, and count it.

• Let E = {no two rooks can capture each other}.
Count E, by placing rooks in turn, to find P(E).
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Solution 2. Keep the rooks indistinguishable.

• Define S, and count it.

• Count the outcomes in E for this different
sample space.

Note. Solution 2 is harder to carry out than
Solution 1. Labeling indistinguisable objects often
helps, but not always!
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Discussion Problem. Ten students divide
themselves randomly into two teams, to play
five-a-side soccer. Find the chance that Xuan,
Yasmin and Zack are all on the same team.

Solution.
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Multinomial coefficients

• Suppose we want to divide n objects into r

groups, labeled 1, 2, . . . , r, with ni objects in
group i for i = 1, 2, . . . r and

∑n
i=1 ri = n.

In how many ways can this be done?

• The number of such arrangements is called “n

choose n1, . . . , nr” and written as
(

n
n1 n2 ... nr

)
.

• Counting this multinomial coefficient gives(
n

n1 n2 . . . nr

)
=

n!
n1! n2! . . . , nr!

Proof. All n! permutations of 1, . . . , n can be
counted by first assigning objects to groups and
then assigning labels within each group, writing
permutations as (x11, . . . , x1n1 , x21, . . . , xrnr ).
Now apply the BPC:
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Another way to count multinomial coefficients

• To divide n objects into r groups of size
n1, . . . , nr, we could note that there are

(
n
n1

)

ways to pick the first group, then
(
n−n1

n2

)
ways to

choose the second from the remaining n− n1

objects, etc.

• Now apply the BPC:
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Example. 12 students are divided into three
groups of sizes 3, 4 and 5 at random. What is the
chance that Ankur and Betty are in the same
group?

Solution.
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