6. Jointly Distributed Random Variables

We are often interested in the relationship between two or more random variables. Example:
A randomly chosen person may be a smoker and/or may get cancer.
Definition. X and Y are jointly distributed random variables if X and Y are both random variables defined on the same sample space \mathbb{S}.
Definition. X and Y are discrete jointly distributed RVs if they both have a countable set of possible values x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots

- In this case, the joint probability mass function of X and Y is

$$
p\left(x_{i}, y_{j}\right)=\mathbb{P}\left(\left\{X=x_{i}\right\} \cap\left\{Y=y_{j}\right\}\right)
$$

- X and Y each have their own p.m.f., which are usually written $p_{X}(x)$ and $p_{Y}(y)$ and are called the marginal p.m.f.s of X and Y.
- The joint p.m.f of X and Y may be written as $p_{X Y}(x, y)$.

Example. Two cards are dealt from a shuffled deck. Let X be the number of these cards which are spades, and Y be the number of hearts. Find the joint p.m.f. of X and Y.
Solution.

Example. Two fair dice are rolled. X is the value on the first die and Y is the larger of the two values. Find the joint p.m.f. of X and Y. Solution.

Properties of the p.m.f.

- The sum of the joint p.m.f. over the possible values of (X, Y) should be 1, i.e.,

$$
\sum_{i j} p_{X Y}\left(x_{i}, y_{j}\right)=1
$$

- $\left\{X=x_{i}\right\}=\bigcup_{j}\left\{X=x_{i}, Y=y_{j}\right\}$. This lets us find the marginal p.m.f. from the joint p.m.f., $p\left(x_{i}\right)=\mathbb{P}\left(X=x_{i}\right)=\sum_{j} p\left(x_{i}, y_{j}\right)$
- Writing the joint p.m.f of X and Y as a table, the marginal p.m.f. of X and Y can be found by summing the values in each row and column.

Continuous Joint Random Variables

Definition: X and Y are continuous jointly distributed RVs if they have a joint density $f(x, y)$ so that for any constants $a_{1}, a_{2}, b_{1}, b_{2}$,

$$
\mathbb{P}\left(a_{1}<X<a_{2}, b_{1}<Y<b_{2}\right)=\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} f(x, y) d y d x
$$

- Almost any subset of $R \subset \mathbb{R}^{2}$ of practical interest can be approximated as the union of disjoint rectangles, and so

$$
\mathbb{P}\{(X, Y) \in R\}=\iint_{R} f(x, y) d y d x
$$

- Integrating over the whole $x-y$ plane,

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
$$

- The marginal density $f_{X}(x)$ of X is

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

Example.The joint density function of X and Y is given by
$f(x, y)= \begin{cases}2 e^{-x} e^{-2 y} & 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}$
Compute (a) $\mathbb{P}(X>1, Y>1)$; (b) $\mathbb{P}(X<Y)$. Solution.

Example. The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}e^{-(x+y)} & 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Find the density function of the random variable $Z=X / Y$.
Solution.

Example. Suppose X and Y have joint p.d.f.

$$
f(x, y)= \begin{cases}c(2 x-y)^{2} & 0 \leq x, y \leq 1 \\ 0 & \text { else }\end{cases}
$$

Find c.
Solution.

Example. Suppose X and Y have joint density

$$
f(x, y)= \begin{cases}1 / \pi & \text { if } x^{2}+y^{2} \leq 1 \\ 0 & \text { if } x^{2}+y^{2}>1\end{cases}
$$

Find (a) $\mathbb{P}\left(X^{2}+Y^{2}<1 / 2\right)$ and (b) the marginal density function of X.
Solution.

Joint Cumulative Distribution Functions

Definition. The joint c.d.f. of X and Y is

$$
F(a, b)=\mathbb{P}(X \leq a, Y \leq b)
$$

with marginal c.d.f.s

$$
F_{X}(a)=\mathbb{P}(X \leq a), \quad F_{Y}(b)=\mathbb{P}(Y \leq b) .
$$

- If X and Y are jointly continuous, with density function $f(x, y)$ then

$$
\mathbb{P}(X \leq a, Y \leq b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f(x, y) d y d x
$$

- Differentiating both sides with respect to a and b, we obtain

$$
\frac{\partial}{\partial a} \frac{\partial}{\partial b} F(a, b)=f(a, b)
$$

Independence of RVs

Definition. X and Y are independent if, for any sets A and $B,\{X \in A\}$ is independent of $\{Y \in B\}$, i.e.

$$
\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

- Taking $A=(-\infty, a]$ and $B=(-\infty, b]$ gives

$$
F(a, b)=F(a) F(b)
$$

- For X and Y discrete, taking $A=\{x\}, B=\{y\}$ gives

$$
p(x, y)=p_{X}(x) p_{Y}(y)
$$

- For X and Y continuous, taking derivatives gives
$f(x, y)=f_{X}(x) f_{Y}(y)$.

Example. Two people, A and B, agree to meet around 1 pm. Each person arrives at a time uniformly distributed between $12: 50$ and $1: 10$, waits for 5 minutes and leaves if the other has not arrived. Find the chance they meet. Solution.

Example. Two points are selected randomly on a line of length L so as to be on opposite sides of the midpoint of the line. Find the probability that the distance between the two points is greater than $L / 3$.

Solution.

Proposition

- Joint RVs X and Y are independent if and only if $F(x, y)=F_{X}(x) F_{Y}(y)$.
- Discrete RVs X and Y are independent if and only if $p(x, y)=p_{X}(x) p_{Y}(y)$.
- Continuous RVs X and Y are independent if and only if $f(x, y)=f_{X}(x) f_{Y}(y)$.
- Continuous/discrete RVs X and Y are independent if and only if their joint p.m.f./p.d.f. can be written as

$$
\begin{aligned}
p\left(x_{i}, y_{j}\right) & =h\left(x_{i}\right) g\left(y_{j}\right) \\
f(x, y) & =h(x) g(y)
\end{aligned}
$$

Proof. We've already seen the "only if." Check the "if" for "Continuous RVs X and Y are independent if and only if $f(x, y)=f_{X}(x) f_{Y}(y)$."

Example 1. Suppose X and Y have joint density $f(x, y)=c \cdot e^{-(x+y)}$ for $0<x<1,0<y<1$. Are X and Y independent? Why?

Solution.

Example 2. Now let X and Y have joint density $f(x, y)=c \cdot e^{-(x+y)}$ for $0<x<1,0<y<x$. Are X and Y independent? Why? Solution.

Sums of Independent RVs

The general case for continuous RVs: Let X and Y be independent, with densities f_{X} and f_{Y}, and c.d.f.s F_{X} and F_{Y}. Denote f_{X+Y} the p.d.f. of $X+Y$, and F_{X+Y} the c.d.f. of $X+Y$.

1. Compute the c.d.f. of the sum, $F_{X+Y}(z)$.
2. Differentiate to get the p.d.f., $f_{X+Y}(z)$.

Note: $\int_{-\infty}^{\infty} h(x-y) g(y) d y$ is called the convolution of $h(x)$ and $g(x)$.

Example. If X and Y are independent random variables, both uniformly distributed on $(0,1)$, calculate the probability density of $X+Y$. Solution.

Example. Suppose X and Y are independent, with $f_{X}(x)=\lambda e^{-\lambda x}, x>0$ and $f_{Y}(y)=\lambda e^{-\lambda y}, y>0$. Let $Z=X+Y$. Find the p.d.f. of Z.

Solution.

Example. Suppose X and Y are independent, with $X \sim \operatorname{Poisson}(\lambda)$ and $Y \sim \operatorname{Poisson}(\mu)$. Show that, for $Z=X+Y, Z \sim \operatorname{Poisson}(\lambda+\mu)$. Solution.

Example. The expected number of typographical errors on a page of a certain magazine is 0.2 . What is the probability that an article of 10 pages contains (a) 0 , and (b) 2 or more typographical errors?

Solution.

Sum of Normal RVs. Let X and Y be independent, with $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ and $Y \sim \mathrm{~N}\left(\nu, \tau^{2}\right)$. Then
$X+Y \sim \mathrm{~N}\left(\mu+\nu, \sigma^{2}+\tau^{2}\right)$
Solution. (a) First show the simpler case, that if $X \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ and $Y \sim \mathrm{~N}\left(0, \tau^{2}\right)$ then $X+Y \sim \mathrm{~N}\left(0, \sigma^{2}+\tau^{2}\right)$.

Solution continued. (b) Extend (a) to solve

 the general case.Example. The gross weekly sales at a certain restaurant is a normal random variable with mean $\$ 2200$ and standard deviation $\$ 230$. What is the probability that the total gross sales over the next 2 weeks exceeds $\$ 5000$.

Solution.

Example. 25.2% of U.S. males and 23.6% of females never eat breakfast. Find the chance that in a random sample of 200 men and 200 women, at least as many women never east breakfast. Solution.

Conditional Distributions

We want to be able to address questions like,

- "What is the distribution of the birth weight of a baby given that the mother weighs 120 lbs ?"
- "What is the distribution of scores in the final given a score of 75% on the midterm?"

The Discrete Case. If X and Y are discrete, with joint probability mass function $p(x, y)=\mathbb{P}(X=x, Y=y)$, we define the conditional p.m.f. of X given $Y=y$ by

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =\mathbb{P}(X=x \mid Y=y) \\
& =\frac{p(x, y)}{p_{Y}(y)}
\end{aligned}
$$

Example. Choose a number X at random from the set of numbers $\{1,2,3,4,5\}$. Now choose a number at random from the subset no larger than X, that is, from $\{1, \ldots, X\}$. Call this second number Y. Find the conditional mass function of X given that $Y=3$. Solution.

Example. If X and Y are independent Poisson random variables with respective parameters λ_{1} and λ_{2}, calculate the conditional distribution of X given that $X+Y=n$.
Solution.

The Continuous Case.

- We must take care interpreting statements like $\mathbb{P}(X \in C \mid Y=y)$ when $\mathbb{P}(Y=y)=0$.
- Instead, calculate $\mathbb{P}(X \in C \mid Y \in[y, y+\delta y])$ and let $\delta y \downarrow 0$.
- This leads to $f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$

Derive this limit:

Example. Suppose that the joint density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{e^{-x / y} e^{-y}}{y} & 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Find $\mathbb{P}(X>1 \mid Y=y)$. Solution.

Example. Let X_{1}, X_{2} and X_{3} be i.i.d. U $[0,1]$.
(a) Find the chance that $X_{3}>X_{1}+X_{2}$.
(b) What is the chance that the largest of the three is greater than the sum of the other two? Solution.

Bayes Theorem for Conditional RVs.

(a) For X and Y continuous RVs:

$$
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}
$$

(b) The discrete case is similar, but with p.m.f.s instead of p.d.f.s:

$$
p_{X \mid Y}(x \mid y)=\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{p_{Y}(y)}
$$

Proof of (a):

