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Abstract

Public health surveillance systems are important for tracking disease dynamics. However not all diseases
are reported, especially those with benign or mild symptoms. In recent years, social and real-time digital
data sources have provided new means of studying disease transmission. Such affordable and accessible data
have the potential to offer new insights into disease epidemiology at the national and international scales. I
used the extensive information repository Google Trends, to examine the digital epidemiology of a common
childhood disease in Australia, chicken pox, caused by varicella zoster virus (VZV), over an eleven-year period.
I built a model to test whether Google Trends data could forecast recurrent seasonal outbreaks by estimating
the magnitude and seasonal timing. I tested 8 different forecasting models, which are nested versions of each
other, against a null cosine model that captured the general seasonality of chicken pox. I also included two
models to ‘fit’, rather than ‘forecast’ the chicken pox data. The model that included the Google Trends
data and a subsection of the parameters fit better than a ‘full model’ which included all parameters and the
null model when examined by Akaike Information Criterion and a likelihood ratio test. These data and the
methodological approaches provide a novel way to track, and forecast the global burden of childhood disease.
I hope to exapnd this research into other childhood diseases for which surveillance is lacking.

Introduction

Childhood infectious diseases continue to be a major global problem, and surveillance is needed to inform
strategies for the prevention and mitigation of disease transmission. Our ability to characterize the global
picture of childhood diseases is limited, as detailed epidemiological data are generally nonexistent or inaccessible
across much of the world. Available data suggest that recurrent outbreaks of acute infectious diseases peak
within a relatively consistent, but disease-specific seasonal window, which differs geographically (1,2,3,4,5).
Geographic variation in disease transmission is poorly understood, suggesting substantial knowledge gains
from methods that can expand global epidemiological surveillance. Seasonal variations in host-pathogen
interactions are common in nature (6). In humans, the immune system undergoes substantial seasonal changes
in gene expression, which is inverted between European locations and Oceana (7). The regulation of seasonal
changes in both disease incidence and immune defense is known to interact with environmental factors such
as annual changes in day length, humidity and ambient temperature (8). Accordingly, quantification of
global spatiotemporal patterns of disease incidence can help to disentangle environmental, demographic, and
physiological drivers of infectious disease transmission. Furthermore, the recognition of the regional timing
of outbreaks would establish the groundwork for anticipating clinical cases, and when applicable, initiating
public health interventions.

Since childhood disease outbreaks are often explosive and short-lived (9), temporally rich (i.e., weekly or
monthly) data are needed to understand their dynamics. Similarly, in order to establish the recurrent nature
of outbreaks that occur at annual or multi-annual frequencies, long-term data are needed. Thus, ideal disease
incidence data have both high temporal resolution and breadth (i.e., frequent observations over many years).
Over the past decade, the internet has become a significant health resource for the general public and health
professionals (10,11). Internet query platforms, such as Google Trends, have provided powerful and accessible
resources for identifying outbreaks and for implementing intervention strategies (12,13,14). Research on
infectious disease information seeking behaviour has demonstrated that internet queries can complement
traditional surveillance by providing a rapid and efficient means of obtaining large epidemiological datasets
(13,15,16,17,18). For example, epidemiological information contained within Google Trends has been used in
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the study of rotavirus, norovirus, and influenza (14,15,17,18). These tools offer substantial promise for the
global monitoring of diseases in countries that lack clinical surveillance but have sufficient internet coverage
to allow for surveillance via digital epidemiology.

Acquisition of Google Trends Data

Google Trends data were used to assess patterns of information seeking behavior over long time periods,
from January 2004 to July 2015. To evaluate childhood disease information seeking behaviour, we obtained
country-specific data from Google (19). Google Trends represent the relative number of searches for a specific
key word (e.g. “chicken pox”) standardized within each country such that the values range from 0 to 100. A
search volume of 0 is assigned, by Google Trends, to weeks/months with a minimal amount of searches.

In order to relate Google Trends data to the dynamics of chicken pox (or other diseases of interest), care
must be taken to select appropriate search terms. Chicken pox is the classical manifestation of disease, and
therefore, language-specific queries of ‘’chicken pox’‘are a straightforward choice for data-mining. In contrast,
infections with generic symptoms, such as fever and diarrhea, could arise from many other diseases, making
it difficult to identify appropriate queries. In either case, search terms vary subtly from country to country.
For instance, in the U.S.’‘chickenpox’‘is typically written as a single word, whereas in the U.K. and Australia,
people refer to’‘chicken pox” as two words. Here I examined data from Australia, where the data were subset
within the range that included consecutive weeks with > 0 search volume. Chicken pox data from Australia
were digitized from (20), and age structure data were digitized from the United Nations (21).

Forecasting Outbreaks using Google Trends

To determine whether the information seeking behaviour observed in Google data, T, was able to forecast
chicken pox outbreak magnitude and timing in Australia, I built and fitted multiple statistical models to
forecast chicken pox case data. I evaluated the epidemiological information contained in Google Trends by
comparing the Google Trends model with a seasonal null model that did not incorporate Google data. The
null model lacked information seeking in the force of infection parameter, which we defined as the monthly
per capita rate at which children age 0–14 years are infected. In order to estimate the number of symptomatic
VZV infections per month, we multiplied the force of infection with an estimate of the population aged 0–14
years (21). All models were fitted to the case data from a VZV-vaccinated population (Australia), which
exhibited reduced seasonality. To estimate the number of symptomatic VZV infections each month, It, I used
Google Trends data from the previous two months, Tt−1 and Tt−2, where t is time in monthly time steps.
The full chicken pox process model tracked the force of infection, λt,

λt =
[
β1cos

(
2π
12 (t+ ω)

)
Tαt−1 + β2|Tt−1 − Tt−2|+ β3

]
εt. (1)

The model also contained environmental stochasticity, εt, which was drawn from a gamma distribution with
a mean of 1 and variance θ. I estimated 7 parameters for the full model: the mean and the phase of the
seasonality (β1 and ω), parameters scaling the Google Trends data (α and β2), the baseline force of infection
(β3), the process noise dispersion parameter (θ), and the reporting dispersion parameter (τ) of a normal
distribution, with a mean of 1, from which case reports were drawn. The parameters were estimated using
maximum likelihood by iterated particle filtering (MIF) in the R-package pomp (22,23). We forecasted each
model starting with 10000 parameter combinations generated from a sobol design, and replicated through
pomp four times, with interatively smaller random walk standard deviations.

The process model (Eqn. 1) contained environmental stochasticity, εt, which was drawn from a gamma
distribution with a mean of 1 and variance θ. In order to estimate the number of symptomatic VZV infections
per month, I multiplied the force of infection, λ, with an estimate of the population aged 0–14 years (21), C,
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It = λtC. (2)

I modeled the observation process, which represents the number of cases actually reported, to account for
stochasticity in the reporting of symptomatic VZV infections. Case reports were drawn from a normal
distribution with a mean report rate, ρ = 1, and dispersion parameter (τ) which was estimated.

chickenpoxt ∼ N (ρIt, τIt). (3)

I evaluated the epidemiological information contained in Google Trends by comparing the Google Trends
model with a seasonal null model where the force of infection did not incorporate Google Trends data. The
null model force of infection was modeled as:

λt =
[
β1cos

(
2π
12 (t+ ω)

)
+ β3

]
εt. (4)

In addition to the full model, I tested nested variations of the full model (Eqn. 1), including; a model without
the cosine function;

λt =
[
β1(Tαt−1) + β2|Tt−1 − Tt−2|+ β3

]
εt. (5)

a model without the cosine function or the β2 parameter;

λt =
[
β1(Tαt−1) + β3

]
εt. (6)

a model without the cosine function or the α parameter;

λt = [β1(Tt−1) + β2|Tt−1 − Tt−2|+ β3] εt. (7)

a model without the cosine function, α, or the β2 parameters;

λt = [β1(Tt−1) + β3] εt. (8)

a model without the α parameter;

λt =
[
β1cos

(
2π
12 (t+ ω)

)
Tt−1 + β2|Tt−1 − Tt−2|+ β3

]
εt. (9)

a model without the β2 parameter;

λt =
[
β1cos

(
2π
12 (t+ ω)

)
Tαt−1 + β3

]
εt. (10)

and a model without the α or β2 parameters;

λt =
[
β1cos

(
2π
12 (t+ ω)

)
Tt−1 + β3

]
εt. (11)

In addition to the forecasting models, I also wrote two models to fit the Google Trends data to chicken pox
data, without forecasting.
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λt = [β1(Tt) + β3] εt. (12)

λt = [β1(Tαt ) + β3] εt. (13)

Results

Models that included the cosine function (Eqns. 1, 9, 10, 11) fit about 20 likelihood units better (Table 1),
indicating the need for the inclusion of the cosine function. The cosine function is important in forecasting
because without a seasonal function, the model would incorrectly forecast the next time step at all peaks
and troughs. By including the cosine function, the models were able to correctly estimate the downturn
after a peak, and upturn after a trough. Overall, model F (Eqn. 10) fit the best, despite estimating fewer
parameters than the other models. It used one more parameter than the null model, yet fit 14 Log-likelihood
units better. AIC and likelihood ratio tests were based off of this model.

The Google Trends model fit the case data and preformed better than the null model in Australia, as the null
model AIC was > 28 units above Google Trends model AIC. Since both models were seasonally forced, all
models that included the cosine function captured the seasonal timing of outbreaks. However, the Google
Trends model was able to predict the interannual variation in outbreak size (Fig~X), while the null model
could not (Fig Y).

Equation # Model Model Structure LogLik Est # Params AIC ∆ AIC
Eqn 1 A Full −565.43 7 1144.9 24.0
Eqn 4 H Null -569.47 6 1150.9 30.0
Eqn 5 B No Cos −584.96 6 1181.9 61.0
Eqn 6 C No Cos, β2 −585.02 5 1180.0 59.1
Eqn 7 D No Cos, α −586.08 5 1182.2 61.3
Eqn 8 I No Cos, β2, α −585.63 4 1179.3 58.4
Eqn 9 E No α -554.47 6 1120.9 0.0
Eqn 10 F No β2 −563.35 6 1138.7 17.8
Eqn 11 G No α, β2 −558.32 5 1128.0 7.1
Eqn 12 M No Forecast, β2, α −584.42 4 NA NA
Eqn 13 N No Forecast, β2 −583.98 5 NA NA

From these results, I simulated the Maximum-Likelihood parameter set for each the Null model (Eqn. 4)
and the best fit Google Trends model (Model E, Eqn. 9) 10000 times to elucidate the improvement Google
Trends adds to the model fit. I have included my code on how I simulated the model below (not shown -
uncomment if you want to run it).

I then loaded the simulations and plotted it against the data, showing the means and standard deviations at
each month.
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Additionally, I examined the best forecasting Google Model fit vs the data and included the R-squared and
p-values.
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I did the same for the null model, showing the mean and standard deviations at each point.
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The Google Trends model had a much larger standard deviation, allowing for the model (with the standard
deviations) to capture most of the troughs and peaks throughout the time series. The null model had a
smaller standard deviation, with more peaks and troughs outside these values.

I also examined the forecast fit for the null model (means) vs the data and included the R-squared and
p-values.
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When comparing the R-squared values for the null model and the best fit Google model, the Google Trends
data was able to explain around 5 percent of the data. While not huge, it is significant (Table 1). To get a
better idea of how Google Trends was better able to explain the interannual variation in chicken pox cases,
I examined the peak and trough month of each year. I found the peak and trough month for each year,
pulled out the number of cases in that month and created density distributions of the Google Trends and null
models for each peak and trough for each year.

col2rgb("darkred", alpha=TRUE)

## [,1]
## red 139
## green 0
## blue 0
## alpha 255

redtrans <- rgb(139, 0, 0, 127, maxColorValue=255)

col2rgb("darkblue", alpha=TRUE)

## [,1]
## red 0
## green 0
## blue 139
## alpha 255

bluetrans <- rgb(0, 0, 139, 127, maxColorValue=255)

The results show that peaks in cases are typical near the end of the year (Oct/Nov, while a few years had
peaks in other months).

month

## [1] 11 10 11 5 11 11 8 11 9

value

## [1] 282 203 295 190 212 240 229 261 220

I then picked out each of the 10000 simulations for the two models at each of those months, assigning each
it’s own vector.

From that, I created density distributions for each model at the peak month for each year. This is a 3x3
matrix in pdf output, but had to make each year it’s own figure to make it fit into an .rmd file.
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These results are interesting in that the null model does a better job hitting the peaks in each year other
than 2007. The null model performed very good at capturing the peak in 2006, 2010, 2011, and 2012.

I did the same for the density distributions for each model at the trough month for each year. First I pulled
out the months where the minimum number of cases occured each month, and how many cases there were.

Nmonth

## [1] 5 4 2 12 2 2 4 2 2

Nvalue

## [1] 38 69 85 118 78 87 107 122 116
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This figure best explains why the Google Trends model is a better fit to chicken pox data than the null
model. While the Google Trends model best captured the actual peak in 2012, 2013, and 2014, it’s density
distribution was always closer to the actual cases than the null model. The trough in 2006 is hard to
characterize as the model is trying to also estimate initial conditions, which could explain why neither the
Google Trends model or the null model were able to accurately forecast the number of cases here in May, 2006.
Of the models tested that included Google Trends data, model E (Eqn. 9) was best able to forecast chicken
pox incidence. It performed better than the null model that captured the mean seasonality of chicken pox
incidence. Interestingly, the null model was better able to capture chicken pox peak months, but performed
poorly in capturing the troughs each year.

Finally, it may come as a surprise that the two models ‘fitting’ chicken pox data (models M and N), rather
than forecasting, performed similar to the forecasting models that did not include the cosine function. This
may be due to the fairly poor correlation between Google Trends data in Australia to the actual case data
(due to vaccination). If I chose a different country that does not vaccinate, such as Thailand, I would expect
the model fits to be better.

Conclusion

By taking advantage of freely available, real-time, internet search query data, we were able to validate
information seeking behaviour as an appropriate proxy for otherwise cryptic chicken pox outbreaks and use
those data to forecast outbreaks one month in advance. This modeling approach, which incorporated Google
Trends, was able to better forecast outbreaks than models that ignored Google Trends. These results suggest
that information seeking can be used for rapid forecasting, when the reporting of clinical cases are unavailable
or too slow.

Studies of disease transmission at the global level, and the success of interventions, are limited by data
availability. Disease surveillance is a major obstacle in the global effort to improve public health, and is made
difficult by underreporting, language barriers, the logistics of data acquisition, and the time required for data
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curation. I demonstrated that seasonal variation in information seeking reflected disease dynamics, and as
such, was able to reveal global patterns of outbreaks and their mitigation via immunization efforts. Thus,
digital epidemiology is an easily accessible tool that can be used to complement traditional disease surveillance,
and in certain instances, may be the only readily available data source for studying seasonal transmission of
non-notifiable diseases. I focused on chicken pox and its dynamics to demonstrate the strength of digital
epidemiology for studying childhood diseases at the population level, because VZV is endemic worldwide
and the global landscape of VZV vaccination is rapidly changing. Unfortunately, there is still a geographic
imbalance of data sources: the vast majority of digital epidemiology data are derived from temperate regions
with high internet coverage. However, because many childhood diseases remain non-notifiable throughout the
developing world, digital epidemiology provides a valuable approach for identifying recurrent outbreaks when
clinical data are lacking. It remains an open challenge to extend the reach of digital epidemiology to study
other benign and malignant diseases with under-reported outbreaks and to identify spatiotemporal patterns,
where knowledge about the drivers of disease dynamics are most urgently needed.
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