
Chapter 4. Linear time series models and the algebra of
ARMA models

Objectives

1 Putting autoregressive moving average (ARMA) models into the
context of linear time series models.

2 Introduce the backshift operator, and see how it can be used to
develop an algebraic approach to studying the properties of ARMA
models.



Definition: Stationary causal linear process

A stationary causal linear process is a time series models that can
be written as
[M7] Yn = µ+ g0εn + g1εn−1 + g2εn−2 + g3εn−3 + g4εn−4 + . . .
where {εn, n = . . . ,−2,−1, 0, 1, 2, . . . } is a white noise process,
defined for all integer timepoints, with variance Var(εn) = σ2.
We do not need to define any initial values. The doubly infinite noise
process {εn, n = . . . ,−2,−1, 0, 1, 2, . . . } is enough to define Yn for
every n as long as the sequence in [M7] converges.
stationary since the construction is the same for each n.

Question 4.1. When does “stationary” here mean weak stationarity, and
when does it mean strict stationary?
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causal refers to {εn} being a causal driver of {Yn}. The value of Yn
depends only on noise process values already determined by time n.
This matching a requirement for causation
wikipedia.org/wiki/Bradford_Hill_criteria that causes must
precede effects.

linear refers to linearity of Yn as a function of {εn}.

wikipedia.org/wiki/Bradford_Hill_criteria


The autocovariance function for a linear process

γh = Cov
(
Yn, Yn+h

)
= Cov

 ∞∑
j=0

gjεn−j ,

∞∑
k=0

gkεn+h−k


=

∞∑
j=0

∞∑
k=0

gjgkCov
(
εn−j , εn+h−k

)
=

∞∑
j=0

gjgj+hσ
2, for h ≥ 0.

In order for this autocovariance function to exist, we need

∞∑
j=0

g2j <∞.
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Above, we assumed we can move
∑∞

j=0

∑∞
k=0 through Cov.

The interchange of expectation and infinite sums can’t be taken for

granted. Cov
(∑m

i=1Xi,
∑n

j=1 Yj

)
=
∑m

i=1

∑n
j=1 Cov(Xi, Yj) is true

for finite m and n, but not necessarily for infinite sums.

In this course, we do not focus on interchange issues, but we try to
notice when we make assumptions.

The interchange of
∑∞

0 and Cov can be justified by requiring a
stronger condition,

∞∑
j=0

|gj | <∞.

The MA(q) model that we defined in equation [M3] is an example of
a stationary, causal linear process.

The general stationary, causal linear process model [M7] can also be
called the MA(∞) model.



A stationary causal linear solution to the AR(1) model,
and a non-causal solution

Recall the stochastic difference equation defining the AR(1) model,

[M8] Yn = φYn−1 + εn.

This has a causal solution,

[M8.1] Yn =
∑∞

j=0 φ
jεn−j .

It also has a non-causal solution,

[M8.1] Yn =
∑∞

j=0 φ
−jεn+j .

Question 4.2. Work through the algebra to check that M8.1 and M8.2
both solve equation [M8].
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Assessing the convergence of the infinite sums in [M8.1]
and [M8.2]

Question 4.3. For what values of φ is the causal solution [M8.1] a
convergent infinite sum, meaning that it converges to a random variable
with finite variance? For what values is the non-causal solution [M8.2] a
convergent infinite sum?
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Using the MA(∞) representation to compute the
autocovariance of an ARMA model

Question 4.4. The linear process representation can be a convenient way
to calculate autocovariance functions. Use the linear process
representation in [M8.1], together with our expression for the
autocovariance of the general linear process [M7], to get an expression for
the autocovariance function of the AR(1) model.
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The backshift operator and the difference operator

The backshift operator B, also known as the lag operator, is given by

BYn = Yn−1.

The difference operator ∆ = 1−B is

∆Yn = (1−B)Yn = Yn − Yn−1.

Powers of the backshift operator correspond to different time shifts,
e.g.,

B2Yn = B(BYn) = B(Yn−1) = Yn−2.

We can also take a second difference,

∆2Yn = (1−B)(1−B)Yn

= (1− 2B +B2)Yn = Yn − 2Yn−1 + Yn−2.

The backshift operator is linear, i.e.,

B(αXn + βYn) = αBXn + βBYn = αXn−1 + βYn−1



Backshift operators and their powers can be added, multiplied by
each other, and multiplied by a scalar. Mathematically, backshift
operators follow the same rules as the algebra of polynomial
functions. For example, a distributive rule for α+ βB is

(α+ βB)Yn = (αB0 + βB1)Yn = αYn + βBYn = αYn + βYn−1.

Therefore, mathematical properties we know about polynomials can
be used to work with backshift operators.

The AR, MA and linear process model equations can all be written in
terms of polynomials in the backshift operator.

Write φ(x) = 1− φ1x− φ2x2 − · · · − φpxp, an order p polynomial,
The equation M1 for the AR(p) model can be rearranged to give

Yn − φ1Yn−1 − φ2Yn−2 − · · · − φpYn−p = εn,

which is equivalent to

[M1′] φ(B)Yn = εn.



Writing ψ(x) for a polynomial of order q,

ψ(x) = 1 + ψ1x+ ψ2x
2 + · · ·+ ψqx

q,

the MA(q) equation M3 is equivalent to
[M3′] Yn = ψ(B)εn.

Additionally, if g(x) is a function defined by the Taylor series
(wikipedia.org/wiki/Taylor_series) expansion

g(x) = g0 + g1x+ g2x
2 + g3x

3 + g4x
4 + . . . ,

we can write the stationary causal linear process equation [M7] as
[M7′] Yn = µ+ g(B)εn.

Whatever skills you have acquired, or acquire during this course,
about working with Taylor series expansions will help you understand
AR and MA models, and ARMA models that combine both
autoregressive and moving average features.

wikipedia.org/wiki/Taylor_series


The general ARMA model

Putting together M1 and M3 suggests an autoregressive moving
average ARMA(p,q) model given by
[M9]
Yn = φ1Yn−1 + φ2Yn−2 + · · ·+ φpYn−p + εn +ψ1εn−1 + · · ·+ψqεn−q,
where {εn} is a white noise process. Using the backshift operator, we
can write this more succinctly as
[M9′] φ(B)Yn = ψ(B)εn.

Experience with data analysis suggests that models with both AR and
MA components often fit data better than a pure AR or MA process.

The general stationanary ARMA(p,q) also has a mean µ so we get
[M9′′] φ(B)(Yn − µ) = ψ(B)εn.



Question 4.5. Carry out the following steps to obtain the MA(∞)
representation and the autocovariance function of the ARMA(1,1) model,

Yn = φYn−1 + εn + ψεn−1.

1. Formally, we can write

(1− φB)Yn = (1 + ψB)εn,

which algebraically is equivalent to

Yn =

(
1 + ψB

1− φB

)
εn.

We write this as
Yn = g(B)εn,

where

g(x) =

(
1 + ψx

1− φx

)
.



2. To make sense of g(B) we work out the Taylor series expansion,

g(x) = g0 + g1x+ g2x
2 + g3x

3 + . . .

Do this either by hand or using your favorite math software.

3. From 1. we can get the MA(∞) representation. Then, we can apply
the general formula for the autocovariance function of an MA(∞) process.



Causal, invertible ARMA models

We say that the ARMA model [M9] is causal if its MA(∞)
representation is a convergent series.

Recall that causality is about writing Yn in terms of the driving noise
process {εn, εn−1, εn−2, . . . }.
Invertibility is about writing εn in terms of {Yn, Yn−1, Yn−2, . . . }.
To assess causality, we consider the convergence of the Taylor series
expansion of ψ(x)/φ(x) in the ARMA representation

Yn =
ψ(B)

φ(B)
εn.

To assess invertibility, we consider the convergence of the Taylor series
expansion of φ(x)/ψ(x) in the inversion of the ARMA model given by

εn =
φ(B)

ψ(B)
Yn.



Fortunately, there is a simple way to check causality and invertibility.
We will state the result without proof.

The ARMA model is causal if the AR polynomial,

φ(x) = 1− φ1x− φ2x2 − · · · − φpxp

has all its roots (i.e., solutions to φ(x) = 0) outside the unit circle in
the complex plane.

The ARMA model is invertible if the MA polynomial,

ψ(x) = 1 + ψ1x+ ψ2x
2 + · · ·+ ψqx

q

has all its roots (i.e., solutions to ψ(x) = 0) outside the unit circle in
the complex plane.

We can check the roots using the ‘polyroot‘ function in R. For
example, consider the MA(2) model, Yn = εn + 2εn−1 + 2εn−2. The
roots to ψ(x) = 1 + 2x+ 2x2 are

roots <- polyroot(c(1,2,2))

roots

## [1] -0.5+0.5i -0.5-0.5i



Finding the absolute value shows that we have two roots inside the
unit circle, so this MA(2) model is not invertible.

abs(roots)

## [1] 0.7071068 0.7071068

In this case, you should be able to find the roots algebraically. In
general, numerical evaluation of roots is useful.

Question 4.6. It is undesirable to use a non-invertible model for data
analysis. Why? Hint: One answer to this question involves diagnosing
model misspecification.
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Reducible and irreducible ARMA models

The ARMA model can be viewed as a ratio of two polynomials,

Yn =
φ(B)

ψ(B)
εn.

If the two polynomials φ(x) and ψ(x) share a common factor, it can
be canceled out without changing the model.

The fundamental theorem of algebra says that every polynomial
φ(x) = 1− φ1x− · · · − φpxp of degree p can be written in the form

(1− x/λ1)× (1− x/λ2)× · · · × (1− x/λp),

where λ1:p are the p roots of the polynomial, which may be real or
complex valued.

The Taylor series expansion of φ(B)−1 is convergent if and only if
(1−B/λi)−1 has a convergent expansion for each i ∈ 1 : p. This
happens if |λi| > 1 for each i.



The polynomials φ(x) and ψ(x) share a common factor if, and only if,
they share a common root.

It is not clear, just from looking at the model equations, that
Yn = 5

6Yn−1 −
1
6Yn−2 + εn − εn−1 + 1

4εn−2
is exactly the same model as
Yn = 1

3Yn−1 + εn − 1
2εn−1.

To see this, you have to do the math! We see that the second of
these equations is derived from the first by canceling out the common
factor (1− 0.5B) in the ARMA model specification.

list(AR_roots=polyroot(c(1,-5/6,1/6)),

MA_roots=polyroot(c(1,-1,1/4)))

## $AR_roots

## [1] 2+0i 3+0i

##

## $MA_roots

## [1] 2+0i 2-0i
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Deterministic skeletons: Using differential equations to
study ARMA models

Non-random physical processes evolving through time have been
modeled using differential equations ever since the ground-breaking
work by Newton (1687).

We have to attend to the considerable amount of randomness
(unpredictability) present in data and systems we want to study.

However, we want to learn a little bit from the extensive study of
deterministic systems.

The deterministic skeleton of a time series model is the non-random
process obtained by removing randomness from a stochastic model.

For a discrete-time model, we can define a continuous-time
deterministic skeleton by replacing the discrete-time difference
equation with a differential equation.

Rather than deriving a deterministic skeleton from a stochastic time
series model, we can work in reverse: we add stochasticity to a
deterministic model to get a model that can explain non-deterministic
phenomena.



Example: Oscillatory behavior modeled using an AR(2)
process

In physics, a basic model for processes that oscillate (springs,
pendulums, vibrating machine parts, etc) is simple harmonic motion.

The differential equation for a simple harmonic motion process x(t) is

[M10] d2

dt2
x(t) = −ω2x(t).

This is a second order linear differential equation with constant
coefficients. Such equations have a closed form solution, which is
fairly straightforward to compute once you know how.

The solution method is very similar to the method for solving
difference equations coming up elsewhere in time series analysis, so
let’s see how it is done.



1. Look for solutions of the form x(t) = eλt. Substituting this into the
differential equation [M10] we get

λ2eλt = −ω2eλt.

Canceling the term eλt, we see that this has two solutions, with

λ = ±ωi, where i =
√
−1.

2. The linearity of the differential equation means that if y1(t) and y2(t)
are two solutions, then Ay1(t) +By2(t) is also a solution for any A and
B. So, we have a general solution to [M10] given by

x(t) = Aeiωt +Be−iωt.

3. Using the two identities,

sin(ωt) =
1

2

(
eiωt − e−iωt

)
, cos(ωt) =

1

2

(
eiωt + e−iωt

)
,

we can rewrite the general solution as

x(t) = A sin(ωt) +B cos(ωt),

which can also be written as

x(t) = A sin(ωt+ β).
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For the solution in the form x(t) = A sin(ωt+ β),

ω is called the frequency

A is called the amplitude of the oscillation

β is called the phase.

The frequency of the oscillation is determined by [M10], but the
amplitude and phase are unspecfied constants.

Initial conditions can be used to specify A and β.



A discrete time version of [M10] is a deterministic linear difference

equation, replacing d2

dt2
by the second difference operator,

∆2 = (1−B)2. This corresponds to a deterministic model equation,

∆2yn = −ω2yn.

Adding white noise, and expanding out ∆2 = (1−B)2, we get a
stochastic model,
[M11] Yn = 2Yn−1

1+ω2 − Yn−2

1+ω2 + εn.

It seems reasonable to hope that model [M11] would be a good
candidate to describe systems that have semi-regular but somewhat
eratic fluctuations, called quasi-periodic behavior. Such behavior is
evident in business cycles or wild animal populations.



Let’s look at a simulation from [M11] with ω = 0.1 and εn ∼ IID N [0, 1].
From our exact solution to the deterministic skeleton, we expect that the
period of the oscillations (i.e., the time for each completed oscillation)
should be approximately 2π/ω.

omega <- 0.1

ar_coefs <- c(2/(1+omega^2), - 1/(1+omega^2))

X <- arima.sim(list(ar=ar_coefs),n=500,sd=1)

par(mfrow=c(1,2))

plot(X)

plot(ARMAacf(ar=ar_coefs,lag.max=500),type="l",ylab="ACF of X")
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Quasi-periodic fluctuations are said to be ”phase locked” as long as
the random peturbations are not able to knock the oscillations away
from being close to their initial phase.

Eventually, the randomness should mean that the process is equally
likely to have any phase, regardless of the initial phase.

Question 4.7. What is the timescale on which the simulated model shows
phase locked behavior? Equivalently, on what timescale does the phase of
the fluctuations lose memory of its initial phase?
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