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1 Overview

Objectives for this chapter

• Discuss some basic motivations for the topic of time series analysis.

• Introduce some fundamental concepts for time series analysis: stationarity, autocorrelation, autore-
gressive models, moving average models, autoregressive-moving average (ARMA) models, state-
space models. These will be covered in more detail later.

• Introduce some of the computational tools we will be using.

Overview

• Time series data are, simply, data collected at many different times.

• This is a common type of data! Observations at similar time points are often more similar than
more distant observations.

• This immediately forces us to think beyond the independent, identically distributed assumptions
fundamental to much basic statistical theory and practice.

• Time series dependence is an introduction to more complicated dependence structures: space,
space/time, networks (social/economic/communication), ...
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Looking for trends and relationships in dependent data
The first half of this course focuses on:

1. Quantifying dependence in time series data.

2. Finding statistical arguments for the presence or absence of associations that are valid in situations
with dependence.

Example questions: Does Michigan show evidence for global warming? Does Michigan follow global
trends, or is there evidence for regional variation? What is a good prediction interval for weather in the
next year or two?

Modeling and statistical inference for dynamic systems
The second half of this course focuses on:

1. Building models for dynamic systems, which may or may not be linear and Gaussian.

2. Using time series data to carry out statistical inference on these models.

Example questions: Can we develop a better model for understanding variability of financial markets
(known in finance as volatility)? How do we assess our model and decide whether it is indeed an
improvement?

2 Example: Winter in Michigan

2.1 Course files on Github

Example: Winter in Michigan
There is a temptation to attribute a warm winter to global warming. You can then struggle to explain a
subsequent cold winter. Is a trend in fact noticeable at individual locations in the presence of variability?
Let’s look at some data, downloaded from www.usclimatedata.com and put in ann arbor weather.csv.

• You can get this file from the course repository on GitHub.

• Better, you can make a local clone of this git repository that will give you an up-to-date copy of
all the data, notes, code, homeworks and solutions for this course.

y <- read.table(file="ann_arbor_weather.csv",header=1)

2.2 Rmarkdown and knitr

Rmarkdown and knitr
The notes combine source code with text, to generate statistical analysis that is

• Reproducible

• Easily modified or extended

These two properties are useful for developing your own statistical research projects. Also, they are
useful for teaching and learning statistical methodology, since they make it easy for you to replicate and
adapt analysis presented in class.

• Many of you will already know Rmarkdown (.Rmd).

• knitr (.Rnw) is similar, and is also supported by Rstudio.

• knitr is superior for combining with Latex to produce pdf. The notes are in knitr and you can
modify the source code.

• Rmarkdown naturally produces html.
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2.3 Some basic investigation using R

To get a first look at our dataset, str summarizes its structure:

str(y)

’data.frame’: 120 obs. of 12 variables:

$ Year : int 1900 1901 1902 1903 1904 1905 1906 1907 1908..

$ Low : num -7 -7 -4 -7 -11 -3 11 -8 -8 -1 ...

$ High : num 50 48 41 50 38 47 62 61 42 61 ...

$ Hi_min : num 36 37 27 36 31 32 53 38 32 50 ...

$ Lo_max : num 12 20 11 12 6 14 20 11 15 13 ...

$ Avg_min : num 18 17 15 15.1 8.2 10.9 25.8 17.2 17.6 20 ...

$ Avg_max : num 34.7 31.8 30.4 29.6 22.9 25.9 38.8 31.8 28.9..

$ Mean : num 26.3 24.4 22.7 22.4 15.3 18.4 32.3 24.5 23.2..

$ Precip : num 1.06 1.45 0.6 1.27 2.51 1.64 1.91 4.68 1.06 ..

$ Snow : num 4 10.1 6 7.3 11 7.9 3.6 16.1 4.3 8.7 ...

$ Hi_Pricip: num 0.28 0.4 0.25 0.4 0.67 0.84 0.43 1.27 0.63 1..

$ Hi_Snow : num 1.1 3.2 2.5 3.2 2.1 2.5 2 5 1.3 7 ...

We focus on Low, which is the lowest temperature, in Fahrenheit, for January.
As statisticians, we want an uncertainty estimate. We want to know how reliable our estimate is, since
it is based on only a limited amount of data.

• The data are y∗1 , . . . , y
∗
N , which we also write as y∗1:N .

• Basic estimates of the mean and standard deviation are

µ̂1 =
1

N

N∑
n=1

y∗n, σ̂1 =

√√√√ 1

N − 1

N∑
n=1

(y∗n − µ̂1)2. (1)

• This suggests an approximate confidence interval for µ of µ̂1 ± 1.96 σ̂1/
√
N .

Question 1.1. What are the assumptions behind this confidence interval?

• 1955 has missing data, coded as NA, requiring a minor modification. So, we compute µ̂1 and
SE1 = σ̂1/

√
N as

mu1 <- mean(y$Low,na.rm=TRUE)

se1 <- sd(y$Low,na.rm=TRUE)/sqrt(sum(!is.na(y$Low)))

cat("mu1 =", mu1, ", se1 =", se1, "\n")

mu1 = -2.932773 , se1 = 0.6813215

Question 1.2. If you had to give an uncertainty estimate on the mean, is it reasonable to present the
confidence interval, −2.93± 1.34? Do you have ideas of a better alternative?
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Some data analysis

• The first rule of data analysis is to plot the data in as many ways as you can think of! For time
series, we usually start with a time plot

plot(Low~Year,data=y,ty="l")

3 A first look at an autoregressive-moving average (ARMA)
model

ARMA models
Another basic thing to do is to fit an autoregressive-moving average (ARMA) model. We’ll look at
ARMA models in much more detail later in the course. Let’s fit an ARMA model given by

Yn = µ+ α(Yn−1 − µ) + εn + βεn−1. (2)

This has a one-lag autoregressive term, α(Yn−1 − µ), and a one-lag moving average term, βεn−1. It is
therefore called an ARMA(1,1) model. These lags give the model some time dependence.

• If α = β = 0, we get back to the basic independent model, Yn = µ+ εn.

• If α = 0 we have a moving average model with one lag, MA(1).

• If β = 0, we have an autoregressive model with one lag, AR(1).

We model ε1 . . . , εN to be an independent, identically distributed (iid) sequence. To be concrete, let’s
specify a model where they are normally distributed with mean zero and variance σ2.

A note on notation

• In this course, capital Roman letters, e.g., X, Y , Z, denote random variables. We may also use ε,
η, ξ, ζ for random noise processes. Thus, these symbols are used to build models.

• We use lower case Roman letters (x, y, z, . . . ) to denote numbers. These are not random variables.
We use y∗ to denote a data point.
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• “We must be careful not to confuse data with the abstractions we use to analyze them.” (William
James, 1842-1910).

• Other Greek letters will usually be parameters, i.e., real numbers that form part of the model.

4 Fitting an ARMA model in R

Maximum likelihood
We can readily fit the ARMA(1,1) model by maximum likelihood,

arma11 <- arima(y$Low, order=c(1,0,1))

print(arma11) or just arma11 gives a summary of the fitted model, where α is called ar1, β is called
ma1, and µ is called intercept.

Coefficients:

ar1 ma1 intercept

0.785 -0.741 -2.968

s.e. 0.318 0.343 0.812

sigma^2 estimated as 54.5: log likelihood = -406.77,

aic = 821.55

We will write the ARMA(1,1) estimate of µ as µ̂2, and its standard error as SE2.

Investigating R objects
Some poking around is required to extract the quantities of primary interest from the fitted ARMA
model in R.

names(arma11)

[1] "coef" "sigma2" "var.coef" "mask"

[5] "loglik" "aic" "arma" "residuals"

[9] "call" "series" "code" "n.cond"

[13] "nobs" "model"

mu2 <- arma11$coef["intercept"]

se2 <- sqrt(arma11$var.coef["intercept","intercept"])

cat("mu2 =", mu2, ", se2 =", se2, "\n")

mu2 = -2.96805 , se2 = 0.8115067

5 Model diagnostics

Comparing the iid estimate with the ARMA estimate
We see that the two estimates, µ̂1 = −2.93 and µ̂2 = −2.97, are close.

• However, SE1 = 0.68 is an underestimate of error, compared to the better estimate SE2 = 0.81.

• The naive standard error needs to be inflated by 100(SE2/SE1 − 1) = 19.1 percent.
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Exactly how the ARMA(1,1) model is fitted and the standard errors computed will be covered later.
Question 1.3. How do we know if the ARMA analysis is more trustworthy?

Model diagnostic analysis

• We should do diagnostic analysis. The first thing to do is to look at the residuals.

• For an ARMA model, the residual rn at time tn is defined to be the difference between the data,
y∗n, and a one-step ahead prediction of y∗n based on y∗1:n−1, written as yPn .

From the ARMA(1,1) definition,

Yn = µ+ α(Yn−1 − µ) + εn + βεn−1, (3)

a basic one-step-ahead predicted value corresponding to parameter estimates µ̂ and α̂ could be

yPn = µ̂+ α̂(y∗n−1 − µ̂). (4)

A residual time series, r1:N , is then given by

rn = y∗n − yPn . (5)

In fact, R does something slightly more sophisticated.

plot(arma11$resid)

We see slow variation in the residuals, over a decadal time scale. However, the residuals r1:N are close
to uncorrelated. We see this by plotting their pairwise sample correlations at a range of lags. This is
the sample autocorrelation function, or sample ACF, written for each lag h as

ρ̂h =
1
N

∑N−h
n=1 rn rn+h

1
N

∑N
n=1 rn

2
. (6)

acf(arma11$resid,na.action=na.pass)
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• This shows no substantial autocorrelation. An ARMA model may not be a good way to describe
the slow variation present in the residuals of the ARMA(1,1) model.

• This is a simple example. However, inadequate models giving poor statistical uncertainty estimates
is a general concern when working with time series data.

6 Model misspecification and non-reproducibility

Quantifying uncertainty for scientific reproducibility
Usually, omitted dependency in the model will give overconfident (too small) standard errors.

• This leads to scientific reproducibility problems, where chance variation is too often assigned
statistical significance.

• It can also lead to improper pricing of risk in financial markets, a factor in the US financial crisis
of 2007-2008.

7 A first look at a state-space model

Models dynamic systems: State-space models
Scientists and engineers often have equations in mind to describe a system they’re interested in. Often,
we have a model for how the state of a stochastic dynamic system evolves through time, and another
model for how imperfect measurements on this system gives rise to a time series of observations.
This is called a state-space model. The state models the quantities that we think determine how the
system changes with time. However, these idealized state variables are not usually directly and perfectly
measurable.
Statistical analysis of time series data on a system should be able to

1. Help scientists choose between rival hypotheses.

2. Estimate unknown parameters in the model equations.

We will look at examples from a wide range of scientific applications. The dynamic model may be linear
or nonlinear, Gaussian or non-Gaussian.
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A finance example: fitting a model for volatility of a stock market index

• Let {y∗n, n = 1, . . . , N} be the daily returns on a stock market index, such as the S&P 500.

• The return is the difference of the log of the index. If zn is the index value for day n, then
y∗n = log(zn)− log(zn−1).

• Since the stock market is notoriously unpredictable, it is often unproductive to predict the mean
of the returns and instead there is much emphasis on predicting the variability of the returns,
known as the volatility.

• Volatility is critical to assessing the risk of financial investments.

Financial mathematicians have postulated the following model. We do not need to understand it in
detail right now. The point is that investigators find it useful to develop models for how dynamic
systems progress through time, and this gives rise to the time series analysis goals of estimating unknown
parameters and assessing how successfully the fitted model describes the data.

Yn = exp

{
Hn

2

}
εn, Gn = Gn−1 + νn,

Hn = µh(1− φ) + φHn−1

+ Yn−1ση
√

1− φ2 tanh(Gn−1 + νn) exp

{
−Hn−1

2

}
+ ωn.

(7)

• {εn} is iid N(0, 1), {νn} is iid N(0, σ2
ν), {ωn} is iid N(0, σ2

ω).

• Hn is unobserved volatility at time tn. We only observe the return, modeled by Yn.

• Hn has auto-regressive behavior and dependence on Yn−1 and a slowly varying process Gn.

Questions to be addressed later in the course
This is an example of a mechanistic model, where scientific or engineering considerations lead to a
model of interest. Now there is data and a model of interest, it is time to recruit a statistician!

1. How can we get good estimates of the parameters, µh, φ, σν , σω, together with their uncertainties?

2. Does this model fit better than alternative models? So far as it does, what have we learned?

3. Does the data analysis suggest new models, or the collection of new data?

Likelihood-based inference for this partially observed stochastic dynamic system is possible, and enables
addressing these questions (Bretó, 2014).

• By the end of this course, you will be able to carry out data analysis developing complex models
and fitting them to time series. See past final projects for 2016, 2018 and 2020.

License, acknowledgments, and links

• Licensed under the Creative Commons Attribution-NonCommercial license.
Please share and remix non-commercially, mentioning its origin.

• The materials builds on previous courses.

• Compiled on January 21, 2021 using R version 4.0.3.

Back to course homepage
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