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Chapter 7: Introduction to time series analysis in the
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Frequency components

Frequency components of a time series

1 A time series dataset (like any other sequence of numbers) can be
written as a sum of sine and cosine functions with varying frequencies.

2 This is called the Fourier representation or Fourier transform of
the data.

3 The coefficients corresponding to the sine and cosine at each
frequency are called frequency components of the data.

4 Looking at which frequencies have large and small components can
help to identify appropriate models.

5 Looking at the frequency components present in our models can help
to assess whether they are doing a good job of describing our data.
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Frequency components Eigenvalues and eigenvectors of a stationary covariance matrix

What is the spectrum of a time series model?

We begin by reviewing eigenvectors and eigenvalues of covariance
matrices. This eigen decomposition also arises elsewhere in statistics,
e.g. principle component analysis.

A univariate time series model is a vector-valued random variable
Y1:N which we suppose has a covariance matrix V which is an N ×N
matrix with entries Vmn = Cov(Ym, Yn).

V is a non-negative definite symmetric matrix, and therefore has N
non-negative eigenvalues λ1, . . . , λN with corresponding eigenvectors
u1, . . . , uN such that

V un = λnun. (1)

A basic property of these eigenvectors is that they are orthogonal, i.e.,

u
t
mun = 0 if m 6= n. (2)

We may work with normalized eigenvectors that are scaled such that
utnun = 1.
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Frequency components Eigenvalues and eigenvectors of a stationary covariance matrix

We can also check that the components of Y in the directions of
different eigenvectors are uncorrelated.

Since Cov(AY,BY ) = ACov(Y, Y )Bt, we have

Cov(u
t
mY, u

t
nY ) = u

t
mCov(Y, Y )un

= u
t
mV un

= λnu
t
mun

=

{
λn if m = n
0 if m 6= n

For the last equality, we have supposed that the eigenvectors are
normalized.

If we knew V , we could convert the model to a representation where
the observable random variables are uncorrelated.

Transforming the data into its components in the directions of the
eigenvectors of the model allows us to use an uncorrelated model. In
the Gaussian case, we have independence.
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Frequency components Eigenvalues and eigenvectors of a stationary covariance matrix

Eigenvectors for the covariance matrix of an AR(1) model
with N = 100 and φ = 0.8

N <- 100; phi <- 0.8; sigma <- 1

V <- matrix(NA,N,N)

for(m in 1:N) for(n in 1:N) V[m,n]<-sigma^2*phi^abs(m-n)/(1-phi^2)

V_eigen <- eigen(V,symmetric=TRUE)

matplot(V_eigen$vectors[,1:5],type="l")

matplot(V_eigen$vectors[,6:9],type="l")
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Frequency components Eigenvalues and eigenvectors of a stationary covariance matrix

Eigenvalues for the covariance matrix of an AR(1) model
with N = 100 and φ = 0.8

We see that the eigenvectors, plotted as functions of time, look like
sine wave oscillations.

The eigenvalues are

round(V_eigen$values[1:9],2)

[1] 24.59 23.44 21.73 19.70 17.57 15.51 13.61 11.91 10.42

We see that the eigenvalues are decreasing. For this model, the
components of Y1:N with highest variance correspond to long-period
oscillations.

Are the sinusoidal eigenvectors a special feature of this particular time
series model, or something more general?
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Frequency components Eigenvalues and eigenvectors of a stationary covariance matrix

The eigenvectors for a long stationary time series model

Suppose {Yn,−∞ < n <∞} has a stationary autocovariance
function γh.

We write Γ for the infinite matrix with entries

Γm,n = γm−n for all integers m and n. (3)

An infinite eigenvector is a sequence u = {un,−∞ < n <∞} with
corresponding eigenvalue λ such that

Γu = λu, (4)

or, writing out the matrix multiplication explicitly,

∞∑
n=−∞

Γm,nun = λum for all m. (5)

We look for a sinusoidal solution, un = e2πiωn, where ω is cycles per
unit time.
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Frequency components Eigenvalues and eigenvectors of a stationary covariance matrix

∑∞
n=−∞ Γm,nun =

∑∞
n=−∞ γm−nun

=
∑∞

h=−∞ γhum−h setting h = m− n
=

∑∞
h=−∞ γhe

2πiω(m−h)

= e2πiωm
∑∞

h=−∞ γhe
−2πiωh

= umλ(ω) for λ(ω) =
∑∞

h=−∞ γhe
−2πiωh

Question 7.1. Why does this calculation show that un(ω) = e2πiωn is an
eigenvector for Γ for any choice of ω.
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Frequency components Eigenvalues and eigenvectors of a stationary covariance matrix

The eigenvalue at frequency ω is

λ(ω) =

∞∑
h=−∞

γh e
−2πiωh (6)

Viewed as a function of ω, this is called the spectral density
function.

λ(ω) is the Fourier transform of γh.

An integral version of (6) is used in applied math and engineering:

λ(ω) =

∫ ∞
−∞

γ(x) e−2πiωx dx. (7)

We obtain (6) from (7) when γ(h) has a point mass γh when h is an
integer, and γ(x) = 0 for non-integer x.
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Frequency components Eigenvalues and eigenvectors of a stationary covariance matrix

It was convenient to do this calculation with complex exponentials.
However, writing

e2πiωn = cos(2πωn) + i sin(2πωn), (8)

and noting that γh is real, we see that the real and imaginary parts of
λ(ω) =

∑∞
h=−∞ γhe

−2πiωh give us two real eigenvectors, cos(2πωn)
and sin(2πωn).

Question 7.2. Review: how would you demonstrate the correctness of the
identity e2πiω = cos(2πω) + i sin(2πω).
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Frequency components Eigenvalues and eigenvectors of a stationary covariance matrix

Assuming that this computation for an infinite sum represents a limit
of increasing dimension for finite matrices, we have found that the
eigenvectors for any long, stationary time series model are
approximately sinusoidal.

For the finite time series situation, we only expect N eigenvectors for
a time series of length N . We have one eigenvector for ω = 0, two
eigenvectors corresponding to sine and cosine functions with frequency

ωn = n/N, for 0 < n < N/2, (9)

and, if N is even, a final eigenvector with frequency

ω(N/2) = 1/2. (10)

These sine and cosine vectors are the Fourier basis.

The time series y∗1:N is the time domain representation of the data.
Transforming to the Fourier basis gives the frequency domain
representation.
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The Fourier transform

Frequency components and the Fourier transform

The frequency components of Y1:N are the components in the
directions of these eigenvectors, given by

Cn =
1√
N

N∑
k=1

Yk cos(2πωnk) for 0 ≤ n ≤ N/2,

Sn =
1√
N

N∑
k=1

Yk sin(2πωnk) for 1 ≤ n ≤ N/2.

Similarly, the frequency components of data y∗1:N are

cn =
1√
N

N∑
k=1

y∗k cos(2πωnk) for 0 ≤ n ≤ N/2,

sn =
1√
N

N∑
k=1

y∗k sin(2πωnk) for 1 ≤ n ≤ N/2.
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The Fourier transform

The frequency components of the data can be written as real and
imaginary parts of the discrete Fourier transform,

dn =
1√
N

N∑
k=1

y∗ke
−2πin/N

= cn − isn
The normalizing constant of 1/

√
N is convenient for a central limit

theorem.

Various choices about signs and factors of 2π,
√

2π and
√
N can be

made in the definition of the Fourier transform. For example, the fft

command in R does not include this constant.

fft is an implementation of the fast Fourier transform algorithm,
which enables computation of all the frequency components with
order N log(N) computation. Computing the frequency components
may appear to require a matrix multiplication involving order N3

additions and multiplications. When N = 105 or N = 106 this
difference becomes important!
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The Fourier transform

The first frequency component, C0, is a special case, since it has
mean µ = E[Yn] whereas the other components have mean zero.

In practice, we subtract a mean before computing the frequency
components, which is equivalent to removing the frequency
component for frequency zero.

The frequency components (C0:N/2, S1:N/2) are asymptotically
uncorrelated. They are constructed as a sum of a large number of
terms, with the usual 1/

√
N scaling for a central limit theorem. So, it

may not be surprising that a central limit theorem applies, giving
asymptotic justification for the following normal approximation.

Moving to the frequency domain (i.e., transforming the data to its
frequency components) has decorrelated the data. Statistical
techniques based on assumptions of independence are appropriate
when applied to frequency components.
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The Fourier transform A normal approximation

Normal approximation for the frequency components

(C1:N/2, S1:N/2) are approximately independent, mean zero, Normal
random variables with

Var(Cn) = Var(Sn) ≈ 1/2λ(ωn). (11)

C0

/√
N is approximately Normal, mean µ, independent of

(C1:N/2, S1:N/2), with

Var(C0

/√
N) ≈ λ(0)

/
N. (12)

It follows from the normal approximation that, for 1 ≤ n ≤ N/2,

C2
n + S2

n ≈ λ(ωn)
χ2
2

2
, (13)

where χ2
2 is a chi-squared random variable on two degrees of freedom.

Taking logs, we have

log
(
C2
n + S2

n

)
≈ log λ(ωn) + log(χ2

2/2). (14)
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The periodogram to estimate the spectral density

The periodogram

The chi-squared property in (13) motivates the periodogram,

In = cn
2 + sn

2 =
∣∣dn∣∣2 (15)

as an estimator of the spectral density.

From (14), log In is as an estimator of the log spectral density with a
convenient statistical property: asymptotically independent,
identically distributed errors at each Fourier frequency.

Therefore, a signal-plus-white-noise model is appropriate for
estimating the log spectral density using the log periodogram.

The periodogram is an inconsistent estimator of the spectrum. We
can smooth the periodogram to borrow strength between nearby
frequencies.
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The periodogram to estimate the spectral density

Interpreting the spectral density as a power spectrum

The power of a wave is proportional to the square of its amplitude.

The spectral density gives the mean square amplitude of the
components at each frequency, and therefore gives the expected
power.

The spectral density function can therefore be called the power
spectrum.
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The periodogram to estimate the spectral density

Question 7.3. Consider the AR(1) model, φ(B)Yn = εn with
φ(B) = 1− φ1B and εn ∼WN(σ2), i.e., white noise with variance σ2.
Show that the spectrum of Y is

λ(ω) =
σ2∣∣φ(e2πiω)∣∣2 =

σ2

1 + φ21 − 2φ1 cos(2πω)
. (16)
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The periodogram to estimate the spectral density

ARMA models have a rational spectrum

The calculation for the AR(1) model generalizes. We give the result
without proof.

Let Yn be an ARMA(p,q) model, φ(B)Yn = ψ(B)εn with
εn ∼WN(σ2). The spectrum of Y is

λ(ω) = σ2

∣∣∣∣∣ψ
(
e2πiω

)
φ
(
e2πiω

) ∣∣∣∣∣
2

. (17)

The so-called rational spectrum of ARMA models is
computationally convenient.

A stationary, causal ARMA model cannot have roots on the unit
circle. If a root approaches the unit circle, the denominator in (17)
becomes close to zero.

The special case of φ(x) = ψ(x) = 1 gives λ(ω) = σ2. White noise
has a constant spectrum, matching the analogy that white light has
uniform intensity across the visible light spectrum.
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Frequency domain data analysis

Michigan winters revisited: Frequency domain methods

y <- read.table(file="ann_arbor_weather.csv",header=TRUE)

head(y[,1:9],3)

Year Low High Hi_min Lo_max Avg_min Avg_max Mean Precip

1900 -7 50 36 12 18 34.7 26.3 1.06

1901 -7 48 37 20 17 31.8 24.4 1.45

1902 -4 41 27 11 15 30.4 22.7 0.60

We have to deal with the NA measurement for 1955. A simple
approach is to replace the NA by the mean.

What other approaches can you think of for dealing with this missing
observation?

What are the strengths and weaknesses of these approaches?

low <- y$Low

low[is.na(low)] <- mean(low, na.rm=TRUE)
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Frequency domain data analysis Smoothing the periodogram

spectrum(low, main="Unsmoothed periodogram")

To smooth, we use the default periodogram smoother in R
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Frequency domain data analysis Smoothing the periodogram

spectrum(low, spans=c(3,5,3), main="Smoothed periodogram",

ylim=c(15,100))

The bar is a 95% pointwise confidence interval which we can slide to
any frequency of interest.

The chi-squared property (14) means this CI is the same width for
each frequency, on the log scale. Note it is asymmetric.
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Frequency domain data analysis Smoothing the periodogram

Question 7.4. What is the default periodogram smoother in R?

Question 7.5. How should we use it?

Question 7.6. Why is that default chosen?
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Frequency domain data analysis Tapering before calculating the periodogram

More details on computing and smoothing the periodogram

To see what R actually does to compute and smooth the
periodogram, type ?spectrum.

This will lead you to type ?spec.pgram.

You will see that, by default, R removes a linear trend, fitted by least
squares. This may often be a sensible thing to do. Why?

You will see that R then multiplies the data by a quantity called a
taper, computed by spec.taper.

The taper smooths the ends of the time series and removes
high-frequency artifacts arising from an abrupt start and end to the
time series.

Formally, from the perspective of the Fourier transform, the time
series takes the value zero outside the observed time points 1 :N .
The sudden jump to and from zero at the start and end produces
unwanted effects in the frequency domain.
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Frequency domain data analysis Tapering before calculating the periodogram

The default taper in R smooths the first and last p = 0.1 fraction of the
time points, by modifying the detrended data y∗1:N to tapered version z1:N
defined by

zn =


y∗n
(
1− cos(πn/Np)

)
/2 if 1 ≤ n < Np

y∗n if Np ≤ n ≤ N(1− p)
y∗n
(
1− cos(π[N + 1− n]/Np)

)
/2 if N(1− p) < n ≤ N

plot(spec.taper(rep(1,100)),type="l",

main="Default taper in R, for a time series of length 100")

abline(v=c(10,90),lty="dotted",col="red")
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Frequency domain data analysis Fitting an AR model to estimate the spectrum

Spectral density estimation by fitting a model

Another standard way to estimate the spectrum is to fit an AR(p) model
with p selected by AIC.

spectrum(low,method="ar",

main="Spectrum estimated via AR model picked by AIC")
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Frequency domain data analysis Fitting an AR model to estimate the spectrum

Units of frequency and period

When we call ω the frequency in cycles per unit time, we really mean
cycles per unit observation.

Suppose the time series consists of equally spaced observations, with
tn − tn−1 = ∆ years. Then, the frequency is ω/∆ cycles per year.

The period of an oscillation is the time for one cycle,

period =
1

frequency
. (18)

When the observation intervals have a time unit (years, seconds, etc)
we usually use that unit for the period, and its inverse for the
frequency.
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Frequency domain data analysis Fitting an AR model to estimate the spectrum

Further reading

Sections 4.1 to 4.3 of Shumway and Stoffer (2017) cover similar
topics to this chapter.
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Frequency domain data analysis Fitting an AR model to estimate the spectrum
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Frequency domain data analysis Fitting an AR model to estimate the spectrum
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