Analysis of Time Series

Chapter 10: Introduction to partially observed Markov process models

Edward L. Ionides

Outline

- Stochastic dynamic systems observed with noise
 - Latent process models
 - The Markov property
 - The measurement model
- Prediction, filtering, smoothing and likelihood
 - Prediction and filtering recursions
 - Calculating the likelihood
 - Smoothing
- Sinear Gaussian POMP models
 - ARMA models as LG-POMP models
 - The basic structural model
 - Spline smoothing represented as an LG-POMP
 - The Kalman filter

Latent process models

- Uncertainty and variability are common features biological and social systems. Complex physical systems can also be unpredictable: we can only forecast weather reliably in the near future.
- Time series models of deterministic trend plus colored noise imply perfect predictability if the trend function enables extrapolation.
- To model variability and unpredictability in a dynamic system, we can specify a stochastic (i.e., random) model for the system.
- Often times, the full dynamic system is unobserved. We have only noisy or incomplete measurements.
- We model measurements as random variables conditional on the trajectory of the latent process. The latent process is also called a state process or hidden process.

The Markov property

- A model for a stochastic dynamic system has the Markov property if the future evolution of the system depends only on the current state, plus randomness introduced in future.
- A models with the Markov property may be called a Markov chain of a Markov process.
- We use the term Markov process since the term chain is often reserved for situations where either time or the latent state (or both) take discrete values.
- The Markov property is often used to model the latent process in a time series model.

Notation for discrete time Markov processes

• A time series model $X_{0:N}$ is a **Markov process** model if the conditional densities satisfy the **Markov property** [P1] that

[P1]
$$f_{X_n|X_{1:n-1}}(x_n \mid x_{1:n-1}) = f_{X_n|X_{n-1}}(x_n \mid x_{n-1}).$$

for all $n \in 1:N$

- We may suppose there is an underlying continuous time, t, such that X_n occurs at time t_n .
- We write X(t) for the continuous time model, setting $X_n = X(t_n)$.
- $t_{1:N}$ are measurement times
- t_0 is the initialization time

Initial conditions

- We **initialize** the Markov process model at a time t_0 , although data are collected only at times $t_{1:N}$.
- The initialization model could be deterministic (a fixed value) or a random variable.
- ullet We model $X_0=X(t_0)$ as a draw from a probability density function

$$f_{X_0}(x_0). (1)$$

- A fixed initial value is a special case of a density corresponding to a point mass with probability one at the fixed value.
- A discrete probability mass function is a special case of a density corresponding to a collection of point masses.

The process model

- The probability density function $f_{X_n|X_{n-1}}(x_n\,|\,x_{n-1})$ is called the **one-step transition density** of the Markov process.
- The Markov property asserts that the next step taken by a Markov process follows the one-step transition density based on the current state, whatever the previous history of the process.
- For a Markov model, the full joint distribution of the latent process is entirely specified by the one-step transition densities, given the initial value.
- Therefore, we also call $f_{X_n|X_{n-1}}(x_n \mid x_{n-1})$ the **process model**.

The joint distribution in terms of one-step transition densities

Exercise 10.1. Use [P1] to derive an expression for the joint distribution of a Markov process as a product of the one-step transition densities. In other words, derive

[P2]
$$f_{X_{0:N}}(x_{0:N}) = f_{X_0}(x_0) \prod_{n=1}^{N} f_{X_n|X_{n-1}}(x_n \mid x_{n-1}).$$

Hint: This involves elementary rules for manipulation of joint and conditional densities, together with application of the Markov property. It is a good exercise to work through by hand to build familiarity with the model class.

Question 10.1. Explain why a causal Gaussian AR(1) process is a Markov process. Caussian AR(1): Y = \$ /n, + En, En id normal (0,02) Here, En is independent of Yi: no by construction, because Yi: not is a function of Eoing. Thus, Yn guen Ying has a distribution depending only of Yn-1, not Youn-2, ie, {Yn} is Markov. Note for a general white newse process, EER are uncorrelated but not independent, so { Yn } is not necessarily Markey.

Time-homogeneous transitions and stationarity

- The one step transition density $f_{X_n|X_{n-1}}$ for a Markov process $X_{0:N}$ can depend on n.
- $X_{0:N}$ is **time-homogeneous** if $f_{X_n|X_{n-1}}$ does not depend on n, so there is a conditional density $f(\cdot|\cdot)$ such that, for all $n\in 1:N$,

$$f_{X_n|X_{n-1}}(x_n \mid x_{n-1}) = f(x_n \mid x_{n-1}).$$
 (2)

Question 10.2. If $X_{0:N}$ is strict stationary, it is time-homogeneous. Why? Strict Staharny implies all joint of andihinal density are shift invariant, so $f_{X_0|X_0}(x_0|X_0) = f_{X_0|X_0}(x_0|X_0)$ for all n.

Question 10.3. Time-homogeneity does not necessarily imply stationarity. Find a counter-example. Consider a random walk, with a without diff: $\times_n = \times_{n-1} + \mu + \varepsilon_n$, ε_n viid normal $(0, 0^2)$. This is non-stationary, but has time-homogeneous transforms.

Partially observed Markov process (POMP) models

- Partial observation may mean either or both of (i) measurement noise; (ii) entirely unmeasured latent variables.
- These features are present in many systems.
- A partially observed Markov process (POMP) model is defined by putting together a Markov latent process model and a measurement model.
- POMP models are a general class, covering many models designed for specific applications.
- Statistical methods for to this general class give us flexibility to develop specific POMP models appropriate to a range of applications.

The measurement model

- The **measurement process** is a collection of random variables $Y_{1:N}$ which models the data $y_{1:N}^*$.
- Y_n is assumed to depend on the latent process only through its value X_n at the time of the measurement. Formally, this assumption is:

$$\text{[P3]} \quad f_{Y_n \mid X_{0:N}, Y_{1:n-1}, Y_{n+1:N}}(y_n \mid x_{0:N}, y_{1:n-1}, y_{n+1:N}) = f_{Y_n \mid X_n}(y_n \mid x_n).$$

• We call $f_{Y_n|X_n}(y_n | x_n)$ the measurement model.

Time-homogeneous measurement models

- In general, the measurement model can depend on n or on any covariate time series.
- The measurement model is **time-homogeneous** if there is a conditional probability density function $g(\cdot | \cdot)$ such that, for all $n \in 1:N$,

$$f_{Y_n|X_n}(y_n \mid x_n) = g(y_n \mid x_n).$$
 (3)

• Time-inhomogeneous process and measurement models are sufficiently common that we benefit from the extra generality of writing $f_{X_n|X_{n-1}}(x_n|x_{n-1})$ and $f_{Y_n|X_n}(y_n|x_n)$ versus $f(x_n|x_{n-1})$ and $g(y_n|x_n)$.

Four basic calculations for working with POMP models

Many time series models in science, engineering and industry can be written as POMP models. A reason that POMP models form a useful tool for statistical work is that there are convenient recursive formulas to carry out four basic calculations:

- Prediction
- Filtering
- Smoothing
- Likelihood calculation

Prediction

• One-step prediction (also called forecasting) of the latent process at time t_{n+1} given data up to time t_n involves finding

$$f_{X_{n+1}|Y_{1:n}}(x_{n+1} \mid y_{1:n}^*).$$
(4)

- We may want to predict more than one time step ahead. However, one-step prediction turns out to be closely related to computing the likelihood function, and therefore central to statistical inference.
- Our prediction is a conditional probability density, not a point estimate. In the context of forecasting, this is called a **probabilistic** forecast. What are the advantages of a probabilistic forecast over a point forecast? Are there any disadvantages?

Advantage: see the full rouge of possibilities, weighted by their possibility.

Disadvantage: It may be harder for some people to understand.

Filtering

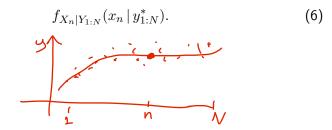
- The **filtering** calculation at time t_n is to find the conditional distribution of the latent process X_n given data $y_{1:n}^*$ available at time t_n .
- Filtering involves calculating

$$f_{X_n|Y_{1:n}}(x_n \mid y_{1:n}^*).$$
(5)

- This can be evaluated numerically or algebraically. We will see that Monte Carlo methods can be a good tool.
- The name "filtering" comes from the history of signal processing. A
 noisy received signal was filtered through capacitors and resistors to
 estimate the source signal.

Smoothing

- In the context of a POMP model, smoothing involves finding the conditional distribution of X_n given all the data, $y_{1:N}^*$.
- So, the smoothing calculation is to find



The likelihood

ullet The likelihood is the joint density of $Y_{1:N}$ evaluated at the data,

$$f_{Y_{1:N}}(y_{1:N}^*). (7)$$

• The model may depend on a parameter vector θ . We can include θ in all the joint and conditional densities above. Then, the **likelihood function** is the likelihood viewed as a function of θ . We write

$$\mathcal{L}(\theta) = f_{Y_{1:N}}(y_{1:N}^*; \theta) \tag{8}$$

- \bullet If we can compute $\mathcal{L}(\theta)$ then we can perform numerical optimization to get a maximum likelihood estimate
- Likelihood evaluation and maximization lets us compute profile likelihood confidence intervals, carry out likelihood ratio tests, and make AIC model comparisons.

The prediction formula

• One-step prediction of the latent process at time t_n given data up to time t_{n-1} can be computed recursively in terms of the filtering problem at time t_{n-1} , via the **prediction formula** for $n \in 1:N$,

$$\begin{split} \text{[P4]} \quad f_{X_n \mid Y_{1:n-1}}(x_n \mid y_{1:n-1}^*) &= \\ \int f_{X_{n-1} \mid Y_{1:n-1}}(x_{n-1} \mid y_{1:n-1}^*) \, f_{X_n \mid X_{n-1}}(x_n \mid x_{n-1}) \, dx_{n-1}. \end{split}$$

• For the case n=1, we let 1:k is the empty set when k=0, so that $f_{X_0|Y_{1:0}}(x_0\,|\,y_{1:0}^*)$ means $f_{X_0}(x_0)$. In other words, the filter distribution at time t_0 is the initial density for the latent process, since at time t_0 we have no data to condition on.

Exercise 10.2. Derive [P4] using the definition of a POMP model with elementary properties of joint and conditional densities.

Hints for deriving the recursion formulas

Any general identity holding for densities must also hold when we condition everything on a new variable.

Example 1. From

$$f_{XY}(x,y) = f_X(x) f_{Y|X}(y \mid x)$$
 (9)

we can condition on Z to obtain

$$f_{XY|Z}(x,y|z) = f_{X|Z}(x|z) f_{Y|XZ}(y|x,z).$$
 (10)

Example 2. The prediction formula is a special case of the identity

$$f_{X|Y}(x \,|\, y) = \int f_{XZ|Y}(x, z \,|\, y) \,dz. \tag{11}$$

Example 3. A conditional form of Bayes' identity is

$$f_{X|YZ}(x \mid y, z) = \frac{f_{Y|XZ}(y \mid x, z) f_{X|Z}(x \mid z)}{f_{Y|Z}(y \mid z)}.$$
 (12)

The filtering formula

- Filtering at time t_n can be computed by combining the new information in the datapoint y_n^* with the calculation of the one-step prediction of the latent process at time t_n given data up to time t_{n-1} .
- This is carried out via the **filtering formula** for $n \in 1:N$,

$$[\mathsf{P5}] \quad f_{X_n \mid Y_{1:n}}(x_n \mid y_{1:n}^*) = \frac{f_{X_n \mid Y_{1:n-1}}(x_n \mid y_{1:n-1}^*) \, f_{Y_n \mid X_n}(y_n^* \mid x_n)}{f_{Y_n \mid Y_{1:n-1}}(y_n^* \mid y_{1:n-1}^*)}.$$

Exercise 10.3. Derive [P5] using the definition of a POMP model with elementary properties of joint and conditional densities.

• The prediction and filtering formulas are **recursive**. If they can be computed for time t_n then they enable the computation at time t_{n+1} .

The conditional likelihood formula

- The denominator in the filtering formula [P5] is the **conditional** likelihood of y_n^* given $y_{1:n-1}^*$.
- It can be computed in terms of the one-step prediction density, via the conditional likelihood formula,

[P6]
$$f_{Y_n|Y_{1:n-1}}(y_n^* \mid y_{1:n-1}^*) = \int f_{X_n|Y_{1:n-1}}(x_n \mid y_{1:n-1}^*) f_{Y_n|X_n}(y_n^* \mid x_n) dx_n.$$

• To make this formula work for n=1, we take advantage of the convention that 1:k is the empty set when k=0.

Computation of the likelihood and log likelihood

 \bullet The likelihood of the entire dataset, $y_{1:N}^*$ can be found from [P6], using the identity

$$f_{Y_{1:N}}(y_{1:N}^*) = \prod_{n=1}^{N} f_{Y_n|Y_{1:n-1}}(y_n^* \mid y_{1:n-1}^*).$$
 (13)

• Equation (13) uses the convention that 1:k is the empty set when k=0, so the first term in the product is

$$f_{Y_1|Y_{1:0}}(y_1^* \mid y_{1:0}^*) = f_{Y_1}(y_1^*)$$
(14)

• If our model has an unknown parameter θ then (13) gives the \log likelihood function as a sum of conditional \log likelihoods,

$$\ell(\theta) = \log \mathcal{L}(\theta) = \log f_{Y_{1:N}}(y_{1:N}^*; \theta) = \sum_{n=1}^{N} \log f_{Y_n|Y_{1:n-1}}(y_n^* \mid y_{1:n-1}^*; \theta).$$

The smoothing recursions

- Smoothing is less fundamental for likelihood-based inference than filtering and one-step prediction.
- Nevertheless, sometimes we want to compute the smoothing density, so we develop some necessary formulas.
- The filtering and prediction formulas are recursions forward in time: a solution at time t_{n-1} is used for the computation at t_n .
- For smoothing, we have backwards smoothing recursion formulas,

$$\text{[P7]} \quad f_{Y_{n:N}\mid X_n}(y_{n:N}^*\mid x_n) = f_{Y_n\mid X_n}(y_n^*\mid x_n) f_{Y_{n+1:N}\mid X_n}(y_{n+1:N}^*\mid x_n).$$

$$\begin{split} \text{[P8]} \quad & f_{Y_{n+1:N}|X_n}(y_{n+1:N}^* \,|\, x_n) \\ & = \int f_{Y_{n+1:N}|X_{n+1}}(y_{n+1:N}^* \,|\, x_{n+1}) \, f_{X_{n+1}|X_n}(x_{n+1} \,|\, x_n) \, dx_{n+1}. \end{split}$$

Combining recursions to find the smoothing distribution

The forwards and backwards recursion formulas together allow us to compute the **smoothing formula**,

[P9]
$$f_{X_n|Y_{1:N}}(x_n \mid y_{1:N}^*) = \frac{f_{X_n|Y_{1:n-1}}(x_n \mid y_{1:n-1}^*) f_{Y_{n:N}|X_n}(y_{n:N}^* \mid x_n)}{f_{Y_{n:N}|Y_{1:n-1}}(y_{n:N}^* \mid y_{1:n-1}^*)}.$$

Exercise 10.4. Show how [P7], [P8] and [P9] follow from the basic properties of conditional densities combined with the Markov property.

Hint: you can write the left hand side of [P9] as $f_{X|YZ}$ with $X=X_n$, $Y=Y_{1:n-1}$, $Z=Y_{n:N}$.

Linear Gaussian POMP (LG-POMP) models

- Linear Gaussian partially observed Markov process (LG-POMP) models have many applications across science and engineering.
- Gassian ARMA models are LG-POMP models. The POMP recursion formulas give a computationally efficient way to obtain the likelihood of a Gaussian ARMA model.
- Smoothing splines (including the Hodrick-Prescott filter, which is a smoothing spline) can be written as an LG-POMP model.
- The Basic Structural Model is an LG-POMP used for econometric forecasting. It models a stochastic trend, seasonality, and measurement error, in a framework with econometrically interpretable parameters. This is more interpretable than fitting SARIMA.
- If an LG-POMP model is appropriate, you avoid Monte Carlo computations used for inference in general nonlinear POMP models.

The general LG-POMP model

Suppose the latent process, $X_{0:N}$, and the observation process $\{Y_n\}$, takes vector values with dimension d_X and d_Y . A general mean zero LG-POMP model is specified by

- A sequence of $d_X \times d_X$ matrices, $\mathbb{A}_{1:N}$,
- A sequence of $d_X \times d_X$ covariance matrices, $\mathbb{U}_{0:N}$,
- ullet A sequence of $d_Y imes d_X$ matrices, $\mathbb{B}_{1:N}$
- A sequence of $d_Y \times d_Y$ covariance matrices, $V_{1:N}$.

We initialize with $X_0 \sim N[0, \mathbb{U}_0]$ and then define the entire LG-POMP model by a recursion for $n \in 1:N$,

$$\begin{array}{llll} [\mathsf{LG1}] & X_n & = & \mathbb{A}_n X_{n-1} + \epsilon_n, & & \epsilon_n \sim N[0,\mathbb{U}_n], \\ \\ [\mathsf{LG2}] & Y_n & = & \mathbb{B}_n X_n + \eta_n, & & \eta_n \sim N[0,\mathbb{V}_n]. \end{array}$$

Often, but not always, we will have a **time-homogeneous** LG-POMP model, with $\mathbb{A}_n = \mathbb{A}$, $\mathbb{B}_n = \mathbb{B}$, $\mathbb{U}_n = \mathbb{U}$ and $\mathbb{V}_n = \mathbb{V}$ for $n \in 1:N$.

The LG-POMP representation of a Gaussian ARMA

• Let $\{Y_n\}$ be a Gaussian ARMA(p,q) model with noise process $\omega_n \sim \text{normal}[0,\sigma^2]$, defined by

$$Y_n = \sum_{j=1}^{p} \phi_j Y_{n-j} + \omega_n + \sum_{k=1}^{q} \psi_q \omega_{n-k}.$$
 (15)

- We look for a time-homogeneous LG-POMP defined by [LG1] and [LG2] where Y_n is the first component of X_n with no measurement error.
- To do this, we define $d_X = r = \max(p, q + 1)$ and

$$\mathbb{B} = (1, 0, 0, \dots, 0), \tag{16}$$

$$V = 0. (17)$$

• We require \mathbb{A} and \mathbb{U} such that Y_n satisfies equation (15).

We state a solution and see if it works out. Consider

$$X_{n} = \begin{pmatrix} Y_{n} \\ \phi_{2}Y_{n-1} + \dots + \phi_{r}Y_{n-r+1} + \psi_{1}\omega_{n} + \dots + \psi_{r-1}\omega_{n-r+2} \\ \phi_{3}Y_{n-1} + \dots + \phi_{r}Y_{n-r+1} + \psi_{2}\omega_{n} + \dots + \psi_{r-1}\omega_{n-r+3} \\ \vdots \\ \phi_{r}Y_{n-1} + \psi_{r-1}\omega_{t} \end{pmatrix}$$

We can check that the ARMA equation (15) matches the matrix equation

$$X_n = \mathbb{A} X_{n-1} + \begin{pmatrix} 1 \\ \psi_1 \\ \psi_2 \\ \vdots \\ \psi_{r-1} \end{pmatrix} \omega_n. \text{ where } \mathbb{A} = \begin{pmatrix} \phi_1 & 1 & 0 & \dots & 0 \\ \phi_2 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \phi_{r-1} & 0 & \dots & 0 & 1 \\ \phi_r & 0 & \dots & 0 & 0 \end{pmatrix}$$

This is a time-homogenous LG-POMP, with $\mathbb A$, $\mathbb B$ and $\mathbb V$ as above and

$$\mathbb{U} = \sigma^2(1, \psi_1, \psi_2, \dots, \psi_{r-1})^{\mathrm{T}}(1, \psi_1, \psi_2, \dots, \psi_{r-1}).$$

Different POMPs can give the same model for $Y_{1:N}$

- There are other LG-POMP representations giving rise to the same ARMA model.
- When only one component of a latent process is observed, any model giving rise to the same observed component is indistinguishable from the data.
- Here, the LG-POMP model has order $d_X^2=r^2=\max(p,q+1)^2$ parameters. The ARMA model has order r parameters, so we expect many ways to parameterize the ARMA model as a special case of the much larger LG-POMP model.
- This unidentifiability can also arise for non-Gaussian POMPs, but it is easier to see in the Gaussian case.

The basic structural model

- The basic structural model was developed for econometric analysis.
- It decomposes an observable process $Y_{1:N}$ as the sum of a **level** (L_n) , a **trend** (T_n) describing the rate of change of the level, and a monthly **seasonal component** (S_n) .
- The model supposes that the level, trend and seasonality are perturbed with Gaussian white noise at each time point,

$$\begin{array}{lll} [{\rm BSM1}] & Y_n & = & L_n + S_n + \epsilon_n \\ [{\rm BSM2}] & L_n & = & L_{n-1} + T_{n-1} + \xi_n \\ [{\rm BSM3}] & T_n & = & T_{n-1} + \zeta_n \\ [{\rm BSM4}] & S_n & = & -\sum_{k=1}^{11} S_{n-k} + \eta_n \end{array}$$

where $\epsilon_n \sim \text{normal}[0, \sigma_{\epsilon}^2]$, $\xi_n \sim \text{normal}[0, \sigma_{\xi}^2]$, $\zeta_n \sim \text{normal}[0, \sigma_{\zeta}^2]$, and $\eta_n \sim \text{normal}[0, \sigma_n^2]$.

Two common special cases of the basic structural model

- The **local linear trend** model is the basic structural model without the seasonal component, $\{S_n\}$
- The **local level model** is the basic structural model without either the seasonal component, $\{S_n\}$, or the trend component, $\{T_n\}$. The local level model is therefore a random walk observed with measurement error.

Initial values for the basic structural model

- To complete the model, we need to specify initial values.
- We have an example of the common problem of failing to specify initial values: these are not explained in the documentation of the R implementation of the basic structural model, StructTS. We could go through the source code to find out what it does.
- Incidentally, ?StructTS does give some advice which resonates with our experience earlier in the course that optimization for ARMA models is often imperfect.

"Optimization of structural models is a lot harder than many of the references admit. For example, the 'AirPassengers' data are considered in Brockwell & Davis (1996): their solution appears to be a local maximum, but nowhere near as good a fit as that produced by 'StructTS'. It is quite common to find fits with one or more variances zero, and this can include $sigma_{ens}^2$."

The basic structural model is an LG-POMP model

[BSM1-4] can be put in matrix form,

$$\begin{pmatrix} L_n \\ T_n \\ S_n \\ S_{n-1} \\ S_{n-2} \\ \vdots \\ S_{n-10} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & -1 & -1 & -1 & \dots & -1 \\ 0 & 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} L_{n-1} \\ T_{n-1} \\ S_{n-1} \\ S_{n-2} \\ S_{n-3} \\ \vdots \\ S_{n-11} \end{pmatrix} + \begin{pmatrix} \xi_n \\ \zeta_n \\ \eta_n \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Now, set

$$X_n = (L_n, T_n, S_n, S_{n-1}, S_{n-2}, \dots, S_{n-10})^{\mathrm{T}},$$
 (18)

$$Y_n = (1, 0, 1, 0, 0, \dots, 0)X_n + \epsilon_n. \tag{19}$$

We can identify matrices \mathbb{A} , \mathbb{B} , \mathbb{U} and \mathbb{V} giving a time-homogeneous LG-POMP representation [LG1, LG2] for the basic structural model.

Spline smoothing and its LG-POMP representation

- Spline smoothing is a standard method to smooth scatter plots and time plots. For example, smooth.spline and hpfilter in R.
- A smoothing spline for an equally spaced time series $y_{1:N}^*$ collected at times $t_{1:N}$ is the sequence $x_{1:N}$ minimizing the **penalized sum of squares (PSS)**, which is defined as

[SS1]
$$PSS(x_{1:N}; \lambda) = \sum_{n=1}^{N} (y_n^* - x_n)^2 + \lambda \sum_{n=3}^{N} (\Delta^2 x_n)^2.$$

- The spline is defined for all times, but here we are only concerned with its value at the times $t_{1:N}$.
- Here, $\Delta x_n = (1 B)x_n = x_n x_{n-1}$.

- The **smoothing parameter**, λ , penalizes $x_{1:N}$ to prevent the spline from interpolating the data.
- If $\lambda=0$, the spline will go through each data point, i.e, $x_{1:N}$ will interpolate $y_{1:N}^*$.
- If $\lambda = \infty$, the spline will be the ordinary least squares regression fit,

$$x_n = \alpha + \beta n, \tag{20}$$

since
$$\Delta^2(\alpha + \beta n) = 0$$
.

Now consider the linear Gaussian model,

[SS2]
$$X_n = 2X_{n-1} - X_{n-2} + \epsilon_n, \quad \epsilon_n \sim \text{iid } N[0, \sigma^2/\lambda]$$

[SS3] $Y_n = X_n + \eta_n, \quad \eta_n \sim \text{iid } N[0, \sigma^2]$

- Note that $\Delta^2 X_n = \epsilon_n$.
- We will show that [SS1] is equivalent to [SS2,SS3].

Constructing a linear Gaussian POMP (LG-POMP) model matching [SS2] and [SS3]

Question 10.4. $\{X_n, Y_n\}$ defined in [SS2] and [SS3] is not quite an LG-POMP model. However, we can use $\{X_n\}$ and $\{Y_n\}$ to build an LG-POMP model. How?

Set
$$\tilde{X}_{n} = \begin{pmatrix} X_{n} \\ X_{n-1} \end{pmatrix}$$
, so $\tilde{X}_{n} = \begin{pmatrix} X_{n} \\ X_{n-1} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} X_{n-1} \\ X_{n-2} \end{pmatrix} + \begin{pmatrix} \varepsilon_{n} \\ 0 \end{pmatrix}$

$$= \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \tilde{X}_{n-1} + \tilde{\varepsilon}_{n}$$
for $\tilde{\varepsilon}_{n} = \begin{pmatrix} \varepsilon_{n} \\ 0 \end{pmatrix}$.
Shategy: put all necessary legs into the latest prozess.

Deriving the penalized spline from the LG-POMP

ullet The joint density of $X_{1:N}$ and $Y_{1:N}$ in [SS2,SS3] is

$$f_{X_{1:N}Y_{1:N}}(x_{1:N}, y_{1:N}) = f_{X_{1:N}}(x_{1:N}) f_{Y_{1:N}|X_{1:N}}(y_{1:N} \mid x_{1:N}).$$
 (21)

Taking logs of (21) we get

$$\log f_{X_{1:N}Y_{1:N}}(x_{1:N},y_{1:N}) = \log f_{X_{1:N}}(x_{1:N}) + \log f_{Y_{1:N}\mid X_{1:N}}(y_{1:N}\mid x_{1:N}).$$

• [SS2,SS3] tell us that $\{\Delta^2 X_n, n \in 1: N\}$ and $\{Y_n - X_n, n \in 1: N\}$ are independent $\operatorname{normal}[0, \sigma^2/\lambda]$ and $\operatorname{normal}[0, \sigma^2]$. Thus,

$$\log f_{X_{1:N}Y_{1:N}}(x_{1:N}, y_{1:N}; \sigma, \lambda) = \frac{-1}{2\sigma^2} \sum_{n=1}^{N} (y_n - x_n)^2 + \frac{-\lambda}{2\sigma^2} \sum_{n=2}^{N} (\Delta^2 x_n)^2 + C. \quad (22)$$

• Here, C depends on σ and λ but not on $y_{1:N}$. C depends on the initial terms x_0 and x_{-1} , but we suppose these can be ignored, for example by modeling them with an improper uniform density.

- Comparing (22) with [SS1], we see that maximizing the density $f_{X_{1:N}Y_{1:N}}(x_{1:N},y_{1:N}^*;\sigma,\lambda)$ as a function of $x_{1:N}$ is the same problem as finding the smoothing spline by minimizing the penalized sum of squares.
- For a Gaussian density, the mode (i.e., the maximum of the density) is equal to the expected value. Therefore, we have

$$\arg \min_{x_{1:N}} \text{PSS}(x_{1:N}; \lambda), = \arg \max_{x_{1:N}} f_{X_{1:N}Y_{1:N}}(x_{1:N}, y_{1:N}^*; \sigma, \lambda),$$

$$= \arg \max_{x_{1:N}} \frac{f_{X_{1:N}Y_{1:N}}(x_{1:N}, y_{1:N}^*; \sigma, \lambda)}{f_{Y_{1:N}}(y_{1:N}^*; \sigma, \lambda)},$$

$$= \arg \max_{x_{1:N}} f_{X_{1:N}|Y_{1:N}}(x_{1:N} | y_{1:N}^*; \sigma, \lambda),$$

$$= \mathbb{E}[X_{1:N} | Y_{1:N} = y_{1:N}^*; \sigma, \lambda].$$

- Because a (conditional) normal distribution is characterized by its (conditional) mean and variance, the smoothing calculation for an LG-POMP model involves finding the conditional mean and variance of X_n given $Y_{1:N} = y_{1:N}^*$.
- We conclude that the smoothing problem for this LG-POMP model is the same as the spline smoothing problem defined by [SS1].
- If you have experience using smoothing splines, this connection may help you transfer that experience to POMP models.
- Once you have experience with POMP models, this connection helps you understand spline smoothers that are commonly used in many applications.
- For example, the smoothing parameter λ could be selected by maximum likelihood for the POMP model.

Why do we penalize by $\sum_n \left(\Delta^2 X_n\right)^2$ when smoothing?

Question 10.5. We found that the smoothing spline corresponds to a particular choice of LG-POMP model given by [SS2, SS3], Why do we choose that penalty, rather that the equivalent penalty from some other LG-POMP model?

The spline penalty happens to match the physics of a thin metal place but to match data.

A "spline" is a Metal place used as a technical drawning tool for making curves. This is not a stabistical yishincahin! We are constrained by siftware.

Note: This LG-POMP model is sometimes reasonable, but presumably there are other occasions when a different LG-POMP model would lead to superior performance.

The Kalman filter

- The Kalman filter is the name given to the prediction, filtering and smoothing formulas [P4–P9] for the linear Gaussian partially observed Markov process (LG-POMP) model.
- Linear Gaussian models have Gaussian conditional distributions.
- The integrals in the general POMP formulas can be found exactly for the Gaussian distribution, leading to linear algebra calculations of conditional means and variances.
- The R function arima() uses a Kalman filter to evaluate the likelihood of an ARMA model (or ARIMA, SARMA, SARIMA).

Review of the multivariate normal distribution

• A random variable X taking values in \mathbb{R}^{d_X} is **multivariate normal** with mean μ_X and variance Σ_X if we can write

$$X = \mathbb{H}Z + \mu_X$$

where Z is a vector of d_X independent identically distributed $\operatorname{normal}[0,1]$ random variables and $\mathbb H$ is a $d_X \times d_X$ matrix square root of Σ_X , i.e.,

$$\mathbb{HH}^{^{\mathrm{T}}}=\Sigma_{X}.$$

- A matrix square root of this type exists for any covariance matrix, though the choice of $\mathbb H$ is not unique.
- We write $X \sim \operatorname{normal}[\mu_X, \Sigma_X]$. If Σ_X is invertible, X has a probability density function, afterward of Σ_X

$$f_X(x) = \frac{1}{(2\pi)^{d_X/2} |\Sigma_X|} \exp\left\{-\frac{(x - \mu_X) \left[\Sigma_X\right]^{-1} (x - \mu_X)^{\mathrm{T}}}{2}\right\}.$$

Joint multivariate normal vectors

X and Y are **joint multivariate normal** if the combined vector

$$Z = \left(\begin{array}{c} X \\ Y \end{array}\right)$$

is multivariate normal. In this case, we write

$$\mu_Z = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \quad \Sigma_Z = \begin{pmatrix} \Sigma_X & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_Y \end{pmatrix},$$

where

$$\Sigma_{XY} = \operatorname{Cov}(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)^{\mathrm{T}}].$$

ullet For joint multivariate normal random variables X and Y, we have the useful property that the conditional distribution of X given Y=y is multivariate normal, with conditional mean and variance

$$\begin{aligned} \text{[KF1]} \qquad \qquad & \mu_{X|Y}(y) &= & \mu_X + \Sigma_{XY} \, \Sigma_Y^{-1} \big(y - \mu_Y \big), \\ \text{[KF2]} \qquad & \Sigma_{X|Y} &= & \Sigma_X - \Sigma_{XY} \, \Sigma_Y^{-1} \, \Sigma_{YX}. \end{aligned}$$

We write this as

$$X \mid Y = y \sim \text{normal} [\mu_{X|Y}(y), \Sigma_{X|Y}].$$

- The joint multivariate normal has a special property that the conditional variance of X given Y=y does not depend on the value of y. In non-Gaussian situations, it will usually depend on y.
- If Σ_Y is not invertible, we can interpret Σ_Y^{-1} as a generalized inverse.

Notation for the Kalman filter recursions

We define the conditional means and variances for the filtering, prediction and smoothing distributions:

[KF3]
$$X_n \mid Y_{1:n-1} = y_{1:n-1} \sim \text{normal} \left[\mu_n^P(y_{1:n-1}), \Sigma_n^P \right],$$

[KF4] $X_n \mid Y_{1:n} = y_{1:n} \sim \text{normal} \left[\mu_n^F(y_{1:n}), \Sigma_n^F \right],$

[KF5]
$$X_n | Y_{1:N} = y_{1:N} \sim \text{normal} [\mu_n^S(y_{1:N}), \Sigma_n^S].$$

- For data $y_{1:N}^*$, we call $\mu_n^P = \mu_n^P \left(y_{1:n-1}^* \right) = \mathbb{E} \left[X_n \, | \, Y_{1:n-1} = y_{1:n-1}^* \right]$ the **prediction mean**, and Σ_n^P the **prediction variance**.
- $\mu_n^F = \mu_n^F \left(y_{1:n-1}^* \right) = \mathbb{E} \left[X_n \, | \, Y_{1:n} = y_{1:n}^* \right]$ is the filter mean and Σ_n^F the filter variance.
- $\mu_n^S = \mu_n^S (y_{1:N}^*) = \mathbb{E} \big[X_n \, | \, Y_{1:N} = y_{1:N}^* \big]$ is the smoothed mean and Σ_n^S the smoothed variance.

The Kalman matrix recursions

 Applying the properties of linear combinations of Normal random variables, we get the Kalman filter and prediction recursions:

$$\begin{array}{lll} [\mathsf{KF6}] & & \mu_{n+1}^P(y_{1:n}) & = & \mathbb{A}_{n+1}\mu_n^F(y_{1:n}) \\ \\ [\mathsf{KF7}] & & & \Sigma_{n+1}^P & = & \mathbb{A}_{n+1}\Sigma_n^F\mathbb{A}_{n+1}^{\mathsf{T}} + \mathbb{U}_{n+1}, \\ \\ [\mathsf{KF8}] & & & \Sigma_n^F & = & \left([\Sigma_n^P]^{-1} + \mathbb{B}_n^\mathsf{T}\mathbb{V}_n^{-1}\mathbb{B}_n\right)^{-1}, \\ \\ [\mathsf{KF6}] & & & \mu_n^F(y_{1:n}) & = & \mu_n^P(y_{1:n-1}) + \Sigma_n^F\mathbb{B}_n^\mathsf{T}\mathbb{V}_n^{-1}\{y_n - \mathbb{B}_n\mu_n^P(y_{1:n-1})\}. \end{array}$$

Outline of a derivation of the Kalman matrix recursions

- The prediction recursions [KF6] and [KF7] follow from the property that if X is a d-dimensional multivariate normal, $X \sim \operatorname{normal}(\mu, \Sigma)$, then $\mathbb{A}X + b \sim \operatorname{normal}(\mathbb{A}\mu + b, \mathbb{A}\Sigma\mathbb{A}^{\mathrm{T}})$.
- Note that the multivariate normal identities [KF1,KF2] also hold when all variables are conditioned on some additional joint Gaussian variable, in this case $Y_{1:n-1}$.
- [KF8] and [KF9] can be deduced by writing out the joint density,

$$f_{X_n Y_n | Y_{1:n-1}}(x_n, y_n | y_{1:n-1})$$
 (23)

and completing the square in the exponent. The conditional density of X_n given $Y_{1:n}$ is proportional to this joint density, with proportionality constant allowing integration to one.

Exercise 10.5. The derivation of the Kalman algebra is not central to this course. However, working through the algebra to your own satisfaction is a good exercise.

- The Kalman filter matrix equations are easy to code, and quick to compute unless the dimension of the latent space is very large.
- In numerical weather forecasting, with careful programming, they are solved with latent variables having dimension $d_X \approx 10^7$.
- A similar computation gives backward Kalman recursions. Putting the forward and backward Kalman recursions together, as in [P9], is called Kalman smoothing.

Further reading

- The approach in this chapter is aligned with King et al. (2016)
- Chapter 6 of Shumway and Stoffer (2017) gives an approach emphasizing linear Gaussian state space models.

License, acknowledgments, and links

Licensed under the Creative Commons Attribution NonCommercial license. Please share and remix non commercially, mentioning its origin.

- The materials builds on previous courses.
- Compiled on March 6, 2021 using R version 4.0.4.

Back to course homepage

References

```
King AA, Nguyen D, Ionides EL (2016). "Statistical Inference for Partially Observed Markov Processes via the R Package pomp." Journal of Statistical Software, 69(12), 1–43. doi: 10.18637/jss.v069.i12.
```

Shumway RH, Stoffer DS (2017). Time Series Analysis and its Applications: With R Examples. Springer. URL http://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf.