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Stochastic dynamic systems observed with noise Latent process models

Latent process models

Uncertainty and variability are common features biological and social
systems. Complex physical systems can also be unpredictable: we can
only forecast weather reliably in the near future.

Time series models of deterministic trend plus colored noise imply
perfect predictability if the trend function enables extrapolation.

To model variability and unpredictability in a dynamic system, we can
specify a stochastic (i.e., random) model for the system.

Often times, the full dynamic system is unobserved. We have only
noisy or incomplete measurements.

We model measurements as random variables conditional on the
trajectory of the latent process. The latent process is also called a
state process or hidden process.
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Stochastic dynamic systems observed with noise The Markov property

The Markov property

A model for a stochastic dynamic system has the Markov property if
the future evolution of the system depends only on the current state,
plus randomness introduced in future.

A models with the Markov property may be called a Markov chain or
a Markov process.

We use the term Markov process since the term chain is often
reserved for situations where either time or the latent state (or both)
take discrete values.

The Markov property is often used to model the latent process in a
time series model.

4 / 52



Stochastic dynamic systems observed with noise The Markov property

Notation for discrete time Markov processes

A time series model X0:N is a Markov process model if the
conditional densities satisfy the Markov property [P1] that

[P1] fXn|X1:n−1
(xn |x1:n−1) = fXn|Xn−1

(xn |xn−1).

for all n ∈ 1 : N

We may suppose there is an underlying continuous time, t, such that
Xn occurs at time tn.

We write X(t) for the continuous time model, setting Xn = X(tn).

t1:N are measurement times.

t0 is the initialization time.
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Stochastic dynamic systems observed with noise The Markov property

Initial conditions

We initialize the Markov process model at a time t0, although data
are collected only at times t1:N .

The initialization model could be deterministic (a fixed value) or a
random variable.

We model X0 = X(t0) as a draw from a probability density function

fX0(x0). (1)

A fixed initial value is a special case of a density corresponding to a
point mass with probability one at the fixed value.

A discrete probability mass function is a special case of a density
corresponding to a collection of point masses.
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Stochastic dynamic systems observed with noise The Markov property

The process model

The probability density function fXn|Xn−1
(xn |xn−1) is called the

one-step transition density of the Markov process.

The Markov property asserts that the next step taken by a Markov
process follows the one-step transition density based on the current
state, whatever the previous history of the process.

For a Markov model, the full joint distribution of the latent process is
entirely specified by the one-step transition densities, given the initial
value.

Therefore, we also call fXn|Xn−1
(xn |xn−1) the process model.
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Stochastic dynamic systems observed with noise The Markov property

The joint distribution in terms of one-step transition
densities

Exercise 10.1. Use [P1] to derive an expression for the joint distribution
of a Markov process as a product of the one-step transition densities. In
other words, derive

[P2] fX0:N
(x0:N ) = fX0(x0)

N∏
n=1

fXn|Xn−1
(xn |xn−1).

Hint: This involves elementary rules for manipulation of joint and
conditional densities, together with application of the Markov property. It
is a good exercise to work through by hand to build familiarity with the
model class.
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Stochastic dynamic systems observed with noise The Markov property

Question 10.1. Explain why a causal Gaussian AR(1) process is a Markov
process.
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Stochastic dynamic systems observed with noise The Markov property

Time-homogeneous transitions and stationarity

The one step transition density fXn|Xn−1
for a Markov process X0:N

can depend on n.
X0:N is time-homogeneous if fXn|Xn−1

does not depend on n, so
there is a conditional density f(· | ·) such that, for all n ∈ 1 :N ,

fXn|Xn−1
(xn |xn−1) = f(xn |xn−1). (2)

Question 10.2. If X0:N is strict stationary, it is time-homogeneous. Why?

Question 10.3. Time-homogeneity does not necessarily imply stationarity.
Find a counter-example.
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Stochastic dynamic systems observed with noise The Markov property

Partially observed Markov process (POMP) models

Partial observation may mean either or both of (i) measurement
noise; (ii) entirely unmeasured latent variables.

These features are present in many systems.

A partially observed Markov process (POMP) model is defined by
putting together a Markov latent process model and a measurement
model.

POMP models are a general class, covering many models designed for
specific applications.

Statistical methods for to this general class give us flexibility to
develop specific POMP models appropriate to a range of applications.
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Stochastic dynamic systems observed with noise The measurement model

The measurement model

The measurement process is a collection of random variables Y1:N
which models the data y∗1:N .

Yn is assumed to depend on the latent process only through its value
Xn at the time of the measurement. Formally, this assumption is:

[P3] fYn|X0:N ,Y1:n−1,Yn+1:N
(yn |x0:N , y1:n−1, yn+1:N ) = fYn|Xn

(yn |xn).

We call fYn|Xn
(yn |xn) the measurement model.
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Stochastic dynamic systems observed with noise The measurement model

Time-homogeneous measurement models

In general, the measurement model can depend on n or on any
covariate time series.

The measurement model is time-homogeneous if there is a
conditional probability density function g(· | ·) such that, for all
n ∈ 1 : N ,

fYn|Xn
(yn |xn) = g(yn |xn). (3)

Time-inhomogeneous process and measurement models are
sufficiently common that we benefit from the extra generality of
writing fXn|Xn−1

(xn|xn−1 and fYn|Xn
(yn|xn) versus f(xn|xn−1 and

g(yn|xn).

13 / 52



Prediction, filtering, smoothing and likelihood

Four basic calculations for working with POMP models

Many time series models in science, engineering and industry can be
written as POMP models. A reason that POMP models form a useful tool
for statistical work is that there are convenient recursive formulas to carry
out four basic calculations:

1 Prediction

2 Filtering

3 Smoothing

4 Likelihood calculation
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Prediction, filtering, smoothing and likelihood

Prediction

One-step prediction (also called forecasting) of the latent process at
time tn+1 given data up to time tn involves finding

fXn+1|Y1:n(xn+1 | y∗1:n). (4)

We may want to predict more than one time step ahead. However,
one-step prediction turns out to be closely related to computing the
likelihood function, and therefore central to statistical inference.

Our prediction is a conditional probability density, not a point
estimate. In the context of forecasting, this is called a probabilistic
forecast. What are the advantages of a probabilistic forecast over a
point forecast? Are there any disadvantages?
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Prediction, filtering, smoothing and likelihood

Filtering

The filtering calculation at time tn is to find the conditional
distribution of the latent process Xn given data y∗1:n available at time
tn.

Filtering involves calculating

fXn|Y1:n(xn | y∗1:n). (5)

This can be evaluated numerically or algebraically. We will see that
Monte Carlo methods can be a good tool.

The name “filtering” comes from the history of signal processing. A
noisy received signal was filtered through capacitors and resistors to
estimate the source signal.
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Prediction, filtering, smoothing and likelihood

Smoothing

In the context of a POMP model, smoothing involves finding the
conditional distribution of Xn given all the data, y∗1:N .

So, the smoothing calculation is to find

fXn|Y1:N (xn | y∗1:N ). (6)
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Prediction, filtering, smoothing and likelihood

The likelihood

The likelihood is the joint density of Y1:N evaluated at the data,

fY1:N (y∗1:N ). (7)

The model may depend on a parameter vector θ. We can include θ in
all the joint and conditional densities above. Then, the likelihood
function is the likelihood viewed as a function of θ. We write

L(θ) = fY1:N (y∗1:N ; θ) (8)

If we can compute L(θ) then we can perform numerical optimization
to get a maximum likelihood estimate

Likelihood evaluation and maximization lets us compute profile
likelihood confidence intervals, carry out likelihood ratio tests, and
make AIC model comparisons.
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Prediction, filtering, smoothing and likelihood Prediction and filtering recursions

The prediction formula

One-step prediction of the latent process at time tn given data up to
time tn−1 can be computed recursively in terms of the filtering
problem at time tn−1, via the prediction formula for n ∈ 1 : N ,

[P4] fXn|Y1:n−1
(xn | y∗1:n−1) =∫

fXn−1|Y1:n−1
(xn−1 | y∗1:n−1) fXn|Xn−1

(xn |xn−1) dxn−1.

For the case n = 1, we let 1 : k is the empty set when k = 0, so that
fX0|Y1:0(x0 | y∗1:0) means fX0(x0). In other words, the filter
distribution at time t0 is the initial density for the latent process,
since at time t0 we have no data to condition on.

Exercise 10.2. Derive [P4] using the definition of a POMP model with
elementary properties of joint and conditional densities.
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Prediction, filtering, smoothing and likelihood Prediction and filtering recursions

Hints for deriving the recursion formulas

Any general identity holding for densities must also hold when we
condition everything on a new variable.

Example 1. From

fXY (x, y) = fX(x) fY |X(y |x) (9)

we can condition on Z to obtain

fXY |Z(x, y | z) = fX|Z(x | z) fY |XZ(y |x, z). (10)

Example 2. The prediction formula is a special case of the identity

fX|Y (x | y) =

∫
fXZ|Y (x, z | y) dz. (11)

Example 3. A conditional form of Bayes’ identity is

fX|Y Z(x | y, z) =
fY |XZ(y |x, z) fX|Z(x | z)

fY |Z(y | z)
. (12)
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Prediction, filtering, smoothing and likelihood Prediction and filtering recursions

The filtering formula

Filtering at time tn can be computed by combining the new
information in the datapoint y∗n with the calculation of the one-step
prediction of the latent process at time tn given data up to time tn−1.

This is carried out via the filtering formula for n ∈ 1 : N ,

[P5] fXn|Y1:n(xn | y∗1:n) =
fXn|Y1:n−1

(xn | y∗1:n−1) fYn|Xn
(y∗n |xn)

fYn|Y1:n−1
(y∗n | y∗1:n−1)

.

Exercise 10.3. Derive [P5] using the definition of a POMP model with
elementary properties of joint and conditional densities.

The prediction and filtering formulas are recursive. If they can be
computed for time tn then they enable the computation at time tn+1.
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Prediction, filtering, smoothing and likelihood Calculating the likelihood

The conditional likelihood formula

The denominator in the filtering formula [P5] is the conditional
likelihood of y∗n given y∗1:n−1.

It can be computed in terms of the one-step prediction density, via
the conditional likelihood formula,

[P6] fYn|Y1:n−1
(y∗n | y∗1:n−1) =

∫
fXn|Y1:n−1

(xn | y∗1:n−1) fYn|Xn
(y∗n |xn) dxn.

To make this formula work for n = 1, we take advantage of the
convention that 1 : k is the empty set when k = 0.
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Prediction, filtering, smoothing and likelihood Calculating the likelihood

Computation of the likelihood and log likelihood

The likelihood of the entire dataset, y∗1:N can be found from [P6],
using the identity

fY1:N (y∗1:N ) =

N∏
n=1

fYn|Y1:n−1
(y∗n | y∗1:n−1). (13)

Equation (13) uses the convention that 1 : k is the empty set when
k = 0, so the first term in the product is

fY1|Y1:0(y∗1 | y∗1:0) = fY1(y∗1) (14)

If our model has an unknown parameter θ then (13) gives the log
likelihood function as a sum of conditional log likelihoods,

`(θ) = logL(θ) = log fY1:N (y∗1:N ; θ) =

N∑
n=1

log fYn|Y1:n−1
(y∗n | y∗1:n−1 ; θ).
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Prediction, filtering, smoothing and likelihood Smoothing

The smoothing recursions

Smoothing is less fundamental for likelihood-based inference than
filtering and one-step prediction.

Nevertheless, sometimes we want to compute the smoothing density,
so we develop some necessary formulas.

The filtering and prediction formulas are recursions forward in time: a
solution at time tn−1 is used for the computation at tn.

For smoothing, we have backwards smoothing recursion formulas,

[P7] fYn:N |Xn
(y∗n:N |xn) = fYn|Xn

(y∗n |xn)fYn+1:N |Xn
(y∗n+1:N |xn).

[P8] fYn+1:N |Xn
(y∗n+1:N |xn)

=

∫
fYn+1:N |Xn+1

(y∗n+1:N |xn+1) fXn+1|Xn
(xn+1 |xn) dxn+1.
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Prediction, filtering, smoothing and likelihood Smoothing

Combining recursions to find the smoothing distribution

The forwards and backwards recursion formulas together allow us to
compute the smoothing formula,

[P9] fXn|Y1:N (xn | y∗1:N ) =
fXn|Y1:n−1

(xn | y∗1:n−1) fYn:N |Xn
(y∗n:N |xn)

fYn:N |Y1:n−1
(y∗n:N | y∗1:n−1)

.

Exercise 10.4. Show how [P7], [P8] and [P9] follow from the basic
properties of conditional densities combined with the Markov property.

Hint: you can write the left hand side of [P9] as fX|Y Z with X = Xn,
Y = Y1:n−1, Z = Yn:N .
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Linear Gaussian POMP models

Linear Gaussian POMP (LG-POMP) models

Linear Gaussian partially observed Markov process (LG-POMP)
models have many applications across science and engineering.

Gaussian ARMA models are LG-POMP models. The POMP recursion
formulas give a computationally efficient way to obtain the likelihood
of a Gaussian ARMA model.

Smoothing splines (including the Hodrick-Prescott filter, which is a
smoothing spline) can be written as an LG-POMP model.

The Basic Structural Model is an LG-POMP used for econometric
forecasting. It models a stochastic trend, seasonality, and
measurement error, in a framework with econometrically interpretable
parameters. This is more interpretable than fitting SARIMA.

If an LG-POMP model is appropriate, you avoid Monte Carlo
computations used for inference in general nonlinear POMP models.
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Linear Gaussian POMP models

The general LG-POMP model

Suppose the latent process, X0:N , and the observation process {Yn}, takes
vector values with dimension dX and dY . A general mean zero LG-POMP
model is specified by

A sequence of dX × dX matrices, A1:N ,

A sequence of dX × dX covariance matrices, U0:N ,

A sequence of dY × dX matrices, B1:N

A sequence of dY × dY covariance matrices, V1:N .

We initialize with X0 ∼ N [0,U0] and then define the entire LG-POMP
model by a recursion for n ∈ 1 : N ,

[LG1] Xn = AnXn−1 + εn, εn ∼ N [0,Un],

[LG2] Yn = BnXn + ηn, ηn ∼ N [0,Vn].

Often, but not always, we will have a time-homogeneous LG-POMP
model, with An = A, Bn = B, Un = U and Vn = V for n ∈ 1 : N .
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Linear Gaussian POMP models ARMA models as LG-POMP models

The LG-POMP representation of a Gaussian ARMA

Let {Yn} be a Gaussian ARMA(p, q) model with noise process
ωn ∼ normal[0, σ2], defined by

Yn =

p∑
j=1

φjYn−j + ωn +

q∑
k=1

ψqωn−k. (15)

We look for a time-homogeneous LG-POMP defined by [LG1] and
[LG2] where Yn is the first component of Xn with no measurement
error.

To do this, we define dX = r = max(p, q + 1) and

B = (1, 0, 0, . . . , 0), (16)

V = 0. (17)

We require A and U such that Yn satisfies equation (15).
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Linear Gaussian POMP models ARMA models as LG-POMP models

We state a solution and see if it works out. Consider

Xn =


Yn
φ2Yn−1 + · · ·+ φrYn−r+1 + ψ1ωn + · · ·+ ψr−1ωn−r+2

φ3Yn−1 + · · ·+ φrYn−r+1 + ψ2ωn + · · ·+ ψr−1ωn−r+3
...
φrYn−1 + ψr−1ωt


We can check that the ARMA equation (15) matches the matrix equation

Xn = AXn−1 +


1
ψ1

ψ2
...
ψr−1

ωn. where A =


φ1 1 0 . . . 0

φ2 0 1
. . .

...
...

...
. . .

. . . 0
φr−1 0 . . . 0 1
φr 0 . . . 0 0


This is a time-homogenous LG-POMP, with A, B and V as above and

U = σ2(1, ψ1, ψ2, . . . , ψr−1)
t
(1, ψ1, ψ2, . . . , ψr−1).
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Linear Gaussian POMP models ARMA models as LG-POMP models

Different POMPs can give the same model for Y1:N

There are other LG-POMP representations giving rise to the same
ARMA model.

When only one component of a latent process is observed, any model
giving rise to the same observed component is indistinguishable from
the data.

Here, the LG-POMP model has order d2X = r2 = max(p, q + 1)2

parameters. The ARMA model has order r parameters, so we expect
many ways to parameterize the ARMA model as a special case of the
much larger LG-POMP model.

This unidentifiability can also arise for non-Gaussian POMPs, but it is
easier to see in the Gaussian case.

30 / 52



Linear Gaussian POMP models The basic structural model

The basic structural model

The basic structural model was developed for econometric analysis.

It decomposes an observable process Y1:N as the sum of a level (Ln),
a trend (Tn) describing the rate of change of the level, and a
monthly seasonal component (Sn).

The model supposes that the level, trend and seasonality are
perturbed with Gaussian white noise at each time point,

[BSM1] Yn = Ln + Sn + εn

[BSM2] Ln = Ln−1 + Tn−1 + ξn

[BSM3] Tn = Tn−1 + ζn

[BSM4] Sn = −
∑11

k=1 Sn−k + ηn

where εn ∼ normal[0, σ2ε ], ξn ∼ normal[0, σ2ξ ], ζn ∼ normal[0, σ2ζ ],

and ηn ∼ normal[0, σ2η].
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Linear Gaussian POMP models The basic structural model

Two common special cases of the basic structural model

The local linear trend model is the basic structural model without
the seasonal component, {Sn}

The local level model is the basic structural model without either
the seasonal component, {Sn}, or the trend component, {Tn}. The
local level model is therefore a random walk observed with
measurement error.
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Linear Gaussian POMP models The basic structural model

Initial values for the basic structural model

To complete the model, we need to specify initial values.

We have an example of the common problem of failing to specify
initial values: these are not explained in the documentation of the R
implementation of the basic structural model, StructTS. We could
go through the source code to find out what it does.

Incidentally, ?StructTS does give some advice which resonates with
our experience earlier in the course that optimization for ARMA
models is often imperfect.

“Optimization of structural models is a lot harder than many of the
references admit. For example, the ‘AirPassengers’ data are considered in
Brockwell & Davis (1996): their solution appears to be a local maximum,
but nowhere near as good a fit as that produced by ‘StructTS’. It is quite
common to find fits with one or more variances zero, and this can include
sigma2eps.”
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Linear Gaussian POMP models The basic structural model

The basic structural model is an LG-POMP model

[BSM1–4] can be put in matrix form,

Ln
Tn
Sn
Sn−1
Sn−2
...
Sn−10


=



1 1 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 −1 −1 −1 . . . −1
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . 0 1 0





Ln−1
Tn−1
Sn−1
Sn−2
Sn−3
...
Sn−11


+



ξn
ζn
ηn
0
0
...
0


Now, set

Xn = (Ln, Tn, Sn, Sn−1, Sn−2, . . . , Sn−10)
t
, (18)

Yn = (1, 0, 1, 0, 0, . . . , 0)Xn + εn. (19)

We can identify matrices A, B, U and V giving a time-homogeneous
LG-POMP representation [LG1, LG2] for the basic structural model.

34 / 52



Linear Gaussian POMP models Spline smoothing represented as an LG-POMP

Spline smoothing and its LG-POMP representation

Spline smoothing is a standard method to smooth scatter plots and
time plots. For example, smooth.spline and hpfilter in R.

A smoothing spline for an equally spaced time series y∗1:N collected
at times t1:N is the sequence x1:N minimizing the penalized sum of
squares (PSS), which is defined as

[SS1] PSS(x1:N ;λ) =

N∑
n=1

(y∗n − xn)2 + λ

N∑
n=3

(∆2xn)2.

The spline is defined for all times, but here we are only concerned
with its value at the times t1:N .

Here, ∆xn = (1−B)xn = xn − xn−1.
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Linear Gaussian POMP models Spline smoothing represented as an LG-POMP

The smoothing parameter, λ, penalizes x1:N to prevent the spline
from interpolating the data.

If λ = 0, the spline will go through each data point, i.e, x1:N will
interpolate y∗1:N .

If λ =∞, the spline will be the ordinary least squares regression fit,

xn = α+ βn, (20)

since ∆2(α+ βn) = 0.

Now consider the linear Gaussian model,

[SS2] Xn = 2Xn−1 −Xn−2 + εn, εn ∼ iid N [0, σ2/λ]

[SS3] Yn = Xn + ηn, ηn ∼ iid N [0, σ2]

Note that ∆2Xn = εn.

We will show that [SS1] is equivalent to [SS2,SS3].
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Linear Gaussian POMP models Spline smoothing represented as an LG-POMP

Constructing a linear Gaussian POMP (LG-POMP) model
matching [SS2] and [SS3]

Question 10.4. {Xn, Yn} defined in [SS2] and [SS3] is not quite an
LG-POMP model. However, we can use {Xn} and {Yn} to build an
LG-POMP model. How?
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Linear Gaussian POMP models Spline smoothing represented as an LG-POMP

Deriving the penalized spline from the LG-POMP

The joint density of X1:N and Y1:N in [SS2,SS3] is

fX1:NY1:N (x1:N , y1:N ) = fX1:N
(x1:N ) fY1:N |X1:N

(y1:N |x1:N ). (21)

Taking logs of (21) we get

log fX1:NY1:N (x1:N , y1:N ) = log fX1:N
(x1:N ) + log fY1:N |X1:N

(y1:N |x1:N ).

[SS2,SS3] tell us that {∆2Xn, n ∈ 1 : N} and {Yn −Xn, n ∈ 1 : N}
are independent normal[0, σ2/λ] and normal[0, σ2]. Thus,

log fX1:NY1:N (x1:N , y1:N ;σ, λ) =

−1

2σ2

N∑
n=1

(yn − xn)2 +
−λ
2σ2

N∑
n=3

(∆2xn)2 + C. (22)

Here, C depends on σ and λ but not on y1:N . C depends on the
initial terms x0 and x−1, but we suppose these can be ignored, for
example by modeling them with an improper uniform density.
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Linear Gaussian POMP models Spline smoothing represented as an LG-POMP

Comparing (22) with [SS1], we see that maximizing the density
fX1:NY1:N (x1:N , y

∗
1:N ;σ, λ) as a function of x1:N is the same problem

as finding the smoothing spline by minimizing the penalized sum of
squares.

For a Gaussian density, the mode (i.e., the maximum of the density)
is equal to the expected value. Therefore, we have

arg min
x1:N

PSS(x1:N ;λ), = arg max
x1:N

fX1:NY1:N (x1:N , y
∗
1:N ;σ, λ),

= arg max
x1:N

fX1:NY1:N (x1:N , y
∗
1:N ;σ, λ)

fY1:N (y∗1:N ;σ, λ)
,

= arg max
x1:N

fX1:N |Y1:N (x1:N | y∗1:N ;σ, λ),

= E
[
X1:N |Y1:N = y∗1:N ;σ, λ

]
.
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Because a (conditional) normal distribution is characterized by its
(conditional) mean and variance, the smoothing calculation for an
LG-POMP model involves finding the conditional mean and variance
of Xn given Y1:N = y∗1:N .

We conclude that the smoothing problem for this LG-POMP model is
the same as the spline smoothing problem defined by [SS1].

If you have experience using smoothing splines, this connection may
help you transfer that experience to POMP models.

Once you have experience with POMP models, this connection helps
you understand spline smoothers that are commonly used in many
applications.

For example, the smoothing parameter λ could be selected by
maximum likelihood for the POMP model.

40 / 52



Linear Gaussian POMP models Spline smoothing represented as an LG-POMP

Why do we penalize by
∑

n

(
∆2Xn

)2
when smoothing?

Question 10.5. We found that the smoothing spline corresponds to a
particular choice of LG-POMP model given by [SS2, SS3], Why do we
choose that penalty, rather that the equivalent penalty from some other
LG-POMP model?

Note: This LG-POMP model is sometimes reasonable, but presumably
there are other occasions when a different LG-POMP model would lead to
superior performance.
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The Kalman filter

The Kalman filter is the name given to the prediction, filtering and
smoothing formulas [P4–P9] for the linear Gaussian partially observed
Markov process (LG-POMP) model.

Linear Gaussian models have Gaussian conditional distributions.

The integrals in the general POMP formulas can be found exactly for
the Gaussian distribution, leading to linear algebra calculations of
conditional means and variances.

The R function arima() uses a Kalman filter to evaluate the
likelihood of an ARMA model (or ARIMA, SARMA, SARIMA).
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Review of the multivariate normal distribution

A random variable X taking values in RdX is multivariate normal
with mean µX and variance ΣX if we can write

X = HZ + µX ,

where Z is a vector of dX independent identically distributed
normal[0, 1] random variables and H is a dX × dX matrix square root
of ΣX , i.e.,

HHt
= ΣX .

A matrix square root of this type exists for any covariance matrix,
though the choice of H is not unique.

We write X ∼ normal
[
µX ,ΣX

]
. If ΣX is invertible, X has a

probability density function,

fX(x) =
1

(2π)dX/2|ΣX |
exp

{
−

(x− µX)
[
ΣX

]−1
(x− µX)t

2

}
.
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Joint multivariate normal vectors

X and Y are joint multivariate normal if the combined vector

Z =

(
X
Y

)
is multivariate normal. In this case, we write

µZ =

(
µX
µY

)
, ΣZ =

(
ΣX ΣXY

ΣY X ΣY

)
,

where
ΣXY = Cov(X,Y ) = E

[
(X − µX) (Y − µY )

t]
.
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For joint multivariate normal random variables X and Y , we have the
useful property that the conditional distribution of X given Y = y is
multivariate normal, with conditional mean and variance

[KF1] µX|Y (y) = µX + ΣXY Σ−1Y
(
y − µY

)
,

[KF2] ΣX|Y = ΣX − ΣXY Σ−1Y ΣY X .

We write this as

X |Y = y ∼ normal
[
µX|Y (y) , ΣX|Y

]
.

The joint multivariate normal has a special property that the
conditional variance of X given Y = y does not depend on the value
of y. In non-Gaussian situations, it will usually depend on y.

If ΣY is not invertible, we can interpret Σ−1Y as a generalized inverse.
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Notation for the Kalman filter recursions

We define the conditional means and variances for the filtering, prediction
and smoothing distributions:

[KF3] Xn |Y1:n−1 = y1:n−1 ∼ normal
[
µPn (y1:n−1), ΣP

n

]
,

[KF4] Xn |Y1:n = y1:n ∼ normal
[
µFn (y1:n), ΣF

n

]
,

[KF5] Xn |Y1:N = y1:N ∼ normal
[
µSn(y1:N ), ΣS

n

]
.

For data y∗1:N , we call µPn = µPn
(
y∗1:n−1

)
= E

[
Xn |Y1:n−1 = y∗1:n−1

]
the prediction mean, and ΣP

n the prediction variance.

µFn = µFn
(
y∗1:n−1

)
= E

[
Xn |Y1:n = y∗1:n

]
is the filter mean and ΣF

n

the filter variance.

µSn = µSn
(
y∗1:N

)
= E

[
Xn |Y1:N = y∗1:N

]
is the smoothed mean and

ΣS
n the smoothed variance.
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The Kalman matrix recursions

Applying the properties of linear combinations of Normal random
variables, we get the Kalman filter and prediction recursions:

[KF6] µPn+1(y1:n) = An+1µ
F
n (y1:n)

[KF7] ΣP
n+1 = An+1Σ

F
nA

t
n+1 + Un+1,

[KF8] ΣF
n =

(
[ΣP
n ]−1 + Bt

nV−1n Bn
)−1

,

[KF9] µFn (y1:n) = µPn (y1:n−1) + ΣF
nB

t
nV−1n

{
yn − BnµPn (y1:n−1)

}
.
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Outline of a derivation of the Kalman matrix recursions

The prediction recursions [KF6] and [KF7] follow from the property
that if X is a d−dimensional multivariate normal, X ∼ normal(µ,Σ),
then AX + b ∼ normal

(
Aµ+ b,AΣAt).

Note that the multivariate normal identities [KF1,KF2] also hold
when all variables are conditioned on some additional joint Gaussian
variable, in this case Y1:n−1.
[KF8] and [KF9] can be deduced by writing out the joint density,

fXnYn|Y1:n−1
(xn, yn | y1:n−1) (23)

and completing the square in the exponent. The conditional density
of Xn given Y1:n is proportional to this joint density, with
proportionality constant allowing integration to one.

Exercise 10.5. The derivation of the Kalman filter is not central to this
course. However, working through the algebra to your own satisfaction is a
good exercise.
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The Kalman filter matrix equations are easy to code, and quick to
compute unless the dimension of the latent space is very large.

In numerical weather forecasting, with careful programming, they are
solved with latent variables having dimension dX ≈ 107.

A similar computation gives backward Kalman recursions. Putting the
forward and backward Kalman recursions together, as in [P9], is
called Kalman smoothing.
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Further reading

The approach in this chapter is aligned with King et al. (2016)

Chapter 6 of Shumway and Stoffer (2017) gives an approach
emphasizing linear Gaussian state space models.
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