
Analysis of Time Series

Chapter 16: A case study of financial volatility and a
POMP model with observations driving latent dynamics

Edward L. Ionides

1 / 42

https://ionides.github.io/531w21/

Outline

1 Time series models for financial volatility
The ARCH and GARCH models
Stochastic volatility models

2 Volatility leverage

3 Dynamics depending on past observations

4 Fitting the POMP model to data
Likelihood maximization
Benchmark non-mechanistic models

5 Appendix: Deriving an SMC algorithm for zero measurement error

2 / 42

Time series models for financial volatility

Introduction

Returns on investments in stock market indices or large companies are
often found to be approximately uncorrelated.
If investment returns are substantially correlated, investors can study
their time series behavior and make money.
If the investment is non-liquid (i.e., not reliably tradeable), or
expensive to trade, then it might be hard to make money even if you
can statistically predict a positive expected return.
Otherwise, the market may notice a favorable investment opportunity.
More buyers will lead to higher prices, and the opportunity will
disappear.
Consequently, most readily traded investments (e.g., stock market
indices, or stock of large companies) have close to uncorrelated
returns.
The variability of the returns (called the volatility) can fluctuate
considerably. Understanding this volatility is important for quantifying
and managing the risk of investments.

3 / 42

Time series models for financial volatility

Recall the daily S&P 500 data that we saw earlier, in Chapter 3.

dat <- read.table("sp500.csv",sep=",",header=TRUE)

plot(as.Date(dat$Date),dat$Close,

xlab="date",ylab="S&P 500",type="l")

plot(as.Date(dat$Date),dat$Close, log="y",

xlab="date",ylab="S&P 500",type="l")

4 / 42

Time series models for financial volatility

Returns, absolute returns, and autocorrelation

We write {zn, n = 1, . . . , N} for the S&P 500 index value.

We write the return, i.e., the difference of the log of the index, as

y∗n = log(zn)− log(zn−1).

* We saw in Chapter 3 that y∗2:N has negligible sample
autocorrelation.

However, the absolute deviations from average,

a∗n =

∣∣∣∣∣y∗n − 1

N − 1

N∑
k=2

y∗k

∣∣∣∣∣
have considerable sample autocorrelation.

5 / 42

Time series models for financial volatility

We fit models to the demeaned daily returns for the S&P 500 index
for 2002-2012, to compare with Bretó (2014).

Question 16.1. Is it appropriate to fit a stationary model to this series, or
do we have evidence for violation of stationarity? Explain.

6 / 42

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Time series models for financial volatility The ARCH and GARCH models

The ARCH model

ARCH and GARCH models are widely used for financial time series
modeling. We follow Cowpertwait and Metcalfe (2009) to introduce
these models; see also Section 5.4 of (Shumway and Stoffer, 2017).
An order p autoregressive conditional heteroskedasticity model,
known as ARCH(p), has the form

Yn = εn
√
Vn,

where ε1:N is white noise and

Vn = α0 +

p∑
j=1

αjY
2
n−j .

If ε1:N is Gaussian, then Y1:N is called a Gaussian ARCH(p). Note,
however, that a Gaussian ARCH model is not a Gaussian process, just
a process driven by Gaussian noise.
If Y1:N is a Gaussian ARCH(p), then Y 2

1:N is AR(p), but not Gaussian
AR(p).

7 / 42

Time series models for financial volatility The ARCH and GARCH models

The GARCH model

The generalized ARCH model, known as GARCH(p,q), has the form

Yn = εn
√
Vn,

where

Vn = α0 +

p∑
j=1

αjY
2
n−j +

q∑
k=1

βkVn−k

and ε1:N is white noise.

The GARCH(1.1) model is a popular choice (Cowpertwait and
Metcalfe, 2009) which can be fitted using garch() in the tseries R
package.

8 / 42

Time series models for financial volatility The ARCH and GARCH models

Fitting a GARCH model

require(tseries)

fit.garch <- garch(sp500.ret.demeaned,grad = "numerical",

trace = FALSE)

L.garch <- tseries:::logLik.garch(fit.garch)

This 3-parameter model has a maximized log likelihood of −4019.7.
It appears that a bug in this version of tseries means that simply
logLik(fit.garch) does not work.
From ?garch we learn this is actually a conditional log likelihood
given the first max(p, q) values.

Question 16.2. It is usually inappropriate to present numerical results to
five significant figures. Does that apply to the log likelihood reported
here? Why?

9 / 42

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Time series models for financial volatility The ARCH and GARCH models

We are now in a position to employ the framework of likelihood-based
inference for GARCH models. In particular, profile likelihood,
likelihood ratio tests, and AIC are available.

We can readily simulate from a fitted GARCH model, if we want to
investigate properties of a fitted model that we don’t know how to
compute analytically.

However, GARCH is a black-box model, in the sense that the
parameters don’t have clear interpretation. We can develop an
appropriate GARCH(p,q) model, and that may be useful for
forecasting, but it won’t help us understand more about how financial
markets work.

We seek models that let us entertain different hypotheses about how
volatility behaves.

10 / 42

Time series models for financial volatility Stochastic volatility models

Stochastic volatility models

Volatility can be modeled as a latent stochastic process, partially
observed via the returns.

A Markovian assumption for volatility leads to a POMP model.

As usual for POMP modeling, additional dependence (on previous
lags or other variables) can be included.

These are called stochastic volatility models.

The basic stochastic volatility model (Kastner, 2016) is

Yn = εn exp{Xn/2} (1)

Xn = µ+ φ(Xn−1 − µ) + σηn (2)

X0 = µ+
σ√

1− φ2
η0 (3)

where εn and ηn are iid normal[0, 1]. Here, Xn is the log volatility.

We can use the flexibility of the POMP framework to see if we can do
better.

11 / 42

Volatility leverage

Volatility leverage

It is a fairly well established empirical observation that negative
shocks to a stockmarket index are associated with a subsequent
increase in volatility.

This phenomenon is called leverage.

Here, we formally define leverage, Rn on day n as the correlation
between index return on day n− 1 and the increase in the log
volatility from day n− 1 to day n.

Models have been proposed which incorporate leverage into the
dynamics (Bretó, 2014).

We present a pomp implementation of Bretó (2014), which models
Rn as a random walk on a transformed scale,

Rn =
exp{2Gn} − 1

exp{2Gn}+ 1
,

where {Gn} is the usual, Gaussian random walk.
12 / 42

Volatility leverage

Time-varying parameters

A special case of this model, with the Gaussian random walk having
standard deviation zero, is a fixed leverage model.

The POMP framework provides a general approach to time-varying
parameters. Considering a parameter as a latent, unobserved random
process that can progressively change its value over time (following a
random walk, or some other stochastic process) leads to a POMP
model.

The resulting POMP model is usually non-Gaussian, even when the
original model is Gaussian and the perturbations are Gaussian, unless
the time-varying parameter enters the model additively.

Many real-world systems are non-stationary and could be investigated
using models with time-varying parameters.

13 / 42

Volatility leverage

Following the notation and model representation in equation (4) of
Bretó (2014), we propose a model,

Yn = exp{Hn/2}εn, (4)

Hn = µh(1− φ) + φHn−1 + βn−1Rn exp{−Hn−1/2}+ ωn, (5)

Gn = Gn−1 + νn, (6)

where βn = Ynση
√
1− φ2, {εn} is an iid N(0, 1) sequence, {νn} is

an iid N(0, σ2ν) sequence, and {ωn} is an iid N(0, σ2ω) sequence.

Here, Hn is the log volatility.

14 / 42

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Dynamics depending on past observations

Building a POMP model

A complication is that transition of the latent variables from
(Gn, Hn) to (Gn+1, Hn+1) depends on the observable variable Yn.

This situation appears to be a violation of the POMP model structure.

It is not so uncommon. For example, the same thing happens in a
dynamic system subject to a control measure which is a function of
the observed data.

We can write out an extended model to fit this situation into the
POMP structure, to provide access to methodology for POMP
models.

15 / 42

Dynamics depending on past observations

Formally, a POMP representation has state variable
Xn = (Gn, Hn, Yn) and measurement variable Yn being perfect
observation of this component of Xn.
When the latent state is continuous and there is no measurement
error, the basic particle filter fails since all prediction particles are
inconsistent with the data. We need a modification of sequential
Monte Carlo (SMC).
We write the filtered particle j at time n− 1 as

XF
n−1,j = (GFn−1,j , H

F
n−1,j , y

∗
n−1).

Now we can construct prediction particles at time n,

(GPn,j , H
P
n,j) ∼ fGn,Hn|Gn−1,Hn−1,Yn−1

(gn|GFn−1,j , HF
n−1,j , y

∗
n−1)

with corresponding weight

wn,j = fYn|Gn,Hn
(y∗n|GPn,j , HP

n,j).

Resampling with probability proportional to these weights gives an
SMC representation of the filtering distribution at time n.
A derivation of this is given as an Appendix.

16 / 42

Dynamics depending on past observations

We can coerce the basic sequential Monte Carlo algorithm,
implemented as pfilter in pomp, into carrying out this calculation
by building two different pomp objects, one to do filtering and another
to do simulation.

For the implementation in pomp, we proceed to write Csnippet code
for the two versions of rprocess.

sp500_statenames <- c("H","G","Y_state")

sp500_rp_names <- c("sigma_nu","mu_h","phi","sigma_eta")

sp500_ivp_names <- c("G_0","H_0")

sp500_paramnames <- c(sp500_rp_names,sp500_ivp_names)

17 / 42

Dynamics depending on past observations

rproc1 <- "

double beta,omega,nu;

omega = rnorm(0,sigma_eta * sqrt(1- phi*phi) *

sqrt(1-tanh(G)*tanh(G)));

nu = rnorm(0, sigma_nu);

G += nu;

beta = Y_state * sigma_eta * sqrt(1- phi*phi);

H = mu_h*(1 - phi) + phi*H + beta * tanh(G)

* exp(-H/2) + omega;

"

rproc2.sim <- "

Y_state = rnorm(0,exp(H/2));

"

rproc2.filt <- "

Y_state = covaryt;

"

sp500_rproc.sim <- paste(rproc1,rproc2.sim)

sp500_rproc.filt <- paste(rproc1,rproc2.filt)

18 / 42

Dynamics depending on past observations

sp500_rinit <- "

G = G_0;

H = H_0;

Y_state = rnorm(0,exp(H/2));

"

sp500_rmeasure <- "

y=Y_state;

"

sp500_dmeasure <- "

lik=dnorm(y,0,exp(H/2),give_log);

"

19 / 42

Dynamics depending on past observations

Parameter transformations

For optimization procedures such as iterated filtering, it is convenient
to transform parameters to be defined on the whole real line.

We therefore write transformation functions for ση, σν and φ,

library(pomp)

sp500_partrans <- parameter_trans(

log=c("sigma_eta","sigma_nu"),

logit="phi"

)

20 / 42

Dynamics depending on past observations

We can now build a pomp object suitable for filtering, and parameter
estimation by iterated filtering or particle MCMC.

Note that the data are also placed in a covariate slot.

This is a device to allow the state process evolution to depend on the
data. In a POMP model, the latent process evolution depends only on
the current latent state. In pomp, the consequence of this structure
is that rprocess doesn’t have access to the observation process.

However, a POMP model does allow for the possibility for the basic
elements to depend on arbitrary covariates. In pomp, this means
rprocess has access to a covariate slot.

The code below gives an example of how to fill the covariate slot and
how to use it in rprocess.

21 / 42

Dynamics depending on past observations

sp500.filt <- pomp(data=data.frame(

y=sp500.ret.demeaned,time=1:length(sp500.ret.demeaned)),

statenames=sp500_statenames,

paramnames=sp500_paramnames,

times="time",

t0=0,

covar=covariate_table(

time=0:length(sp500.ret.demeaned),

covaryt=c(0,sp500.ret.demeaned),

times="time"),

rmeasure=Csnippet(sp500_rmeasure),

dmeasure=Csnippet(sp500_dmeasure),

rprocess=discrete_time(step.fun=Csnippet(sp500_rproc.filt),

delta.t=1),

rinit=Csnippet(sp500_rinit),

partrans=sp500_partrans

)

22 / 42

randall-stat-ionides

randall-stat-ionides

Dynamics depending on past observations

Simulating from the model is convenient for developing and testing
the code, as well as to investigate a fitted model:

params_test <- c(

sigma_nu = exp(-4.5),

mu_h = -0.25,

phi = expit(4),

sigma_eta = exp(-0.07),

G_0 = 0,

H_0=0

)

sim1.sim <- pomp(sp500.filt,

statenames=sp500_statenames,

paramnames=sp500_paramnames,

rprocess=discrete_time(

step.fun=Csnippet(sp500_rproc.sim),delta.t=1)

)

sim1.sim <- simulate(sim1.sim,seed=1,params=params_test)

23 / 42

Dynamics depending on past observations

Now. to build the filtering object from sim1.sim, we need to copy
the new simulated data into the covariate slot, and put back the
appropriate version of rprocess.

sim1.filt <- pomp(sim1.sim,

covar=covariate_table(

time=c(timezero(sim1.sim),time(sim1.sim)),

covaryt=c(obs(sim1.sim),NA),

times="time"),

statenames=sp500_statenames,

paramnames=sp500_paramnames,

rprocess=discrete_time(

step.fun=Csnippet(sp500_rproc.filt),delta.t=1)

)

24 / 42

Dynamics depending on past observations

Filtering on simulated data

We check that we can indeed filter and re-estimate parameters
successfully for this simulated data.

As previously discussed, we set up code to switch between different
levels of computational intensity:

run_level <- 3

sp500_Np <- switch(run_level, 100, 1e3, 2e3)

sp500_Nmif <- switch(run_level, 10, 100, 200)

sp500_Nreps_eval <- switch(run_level, 4, 10, 20)

sp500_Nreps_local <- switch(run_level, 10, 20, 20)

sp500_Nreps_global <- switch(run_level, 10, 20, 100)

25 / 42

Dynamics depending on past observations

We carry out replications in parallel, using all available cores on either
a laptop or a single node of a SLURM cluster.

library(doParallel)

cores <- as.numeric(Sys.getenv(’SLURM_NTASKS_PER_NODE’, unset=NA))

if(is.na(cores)) cores <- detectCores()

registerDoParallel(cores)

library(doRNG)

registerDoRNG(34118892)

stew(file=sprintf("pf1-%d.rda",run_level),{
t.pf1 <- system.time(

pf1 <- foreach(i=1:sp500_Nreps_eval,

.packages=’pomp’) %dopar% pfilter(sim1.filt,Np=sp500_Np))

})
(L.pf1 <- logmeanexp(sapply(pf1,logLik),se=TRUE))

se

-3658.7879118 0.1459427

26 / 42

Dynamics depending on past observations

In 4.3 seconds, we obtain a log likelihood estimate of -3658.79 with a
Monte Carlo standard error of 0.15.

Notice that the replications are averaged using the logmeanexp

function, since the likelihood estimate is unbiased on the natural scale
but not the log scale.

We could test the numerical performance of an iterated filtering
likelihood maximization algorithm on simulated data.

We could also study the statistical performance of maximum
likelihood estimators and profile likelihood confidence intervals on
simulated data.

However, here we are going to cut to the chase and start fitting
models to data.

27 / 42

Fitting the POMP model to data

Fitting the stochastic leverage model to S&P500 data

We are now ready to try out iterated filtering on the S&P500 data.
We will use the IF2 algorithm of Ionides et al. (2015), implemented
by mif2.

sp500_rw.sd_rp <- 0.02

sp500_rw.sd_ivp <- 0.1

sp500_cooling.fraction.50 <- 0.5

sp500_rw.sd <- rw.sd(

sigma_nu = sp500_rw.sd_rp,

mu_h = sp500_rw.sd_rp,

phi = sp500_rw.sd_rp,

sigma_eta = sp500_rw.sd_rp,

G_0 = ivp(sp500_rw.sd_ivp),

H_0 = ivp(sp500_rw.sd_ivp)

)

28 / 42

Fitting the POMP model to data

stew(file=sprintf("mif1-%d.rda",run_level),{
t.if1 <- system.time({
if1 <- foreach(i=1:sp500_Nreps_local,

.packages=’pomp’, .combine=c) %dopar% mif2(sp500.filt,

params=params_test,

Np=sp500_Np,

Nmif=sp500_Nmif,

cooling.fraction.50=sp500_cooling.fraction.50,

rw.sd = sp500_rw.sd)

L.if1 <- foreach(i=1:sp500_Nreps_local,

.packages=’pomp’, .combine=rbind) %dopar% logmeanexp(

replicate(sp500_Nreps_eval, logLik(pfilter(sp500.filt,

params=coef(if1[[i]]),Np=sp500_Np))), se=TRUE)

})
})
r.if1 <- data.frame(logLik=L.if1[,1],logLik_se=L.if1[,2],

t(sapply(if1,coef)))

if (run_level>1) write.table(r.if1,file="sp500_params.csv",

append=TRUE,col.names=FALSE,row.names=FALSE)

29 / 42

randall-stat-ionides

Fitting the POMP model to data

This investigation took 20 minutes.
The repeated stochastic maximizations can also show us the geometry
of the likelihood surface in a neighborhood of this point estimate:

pairs(~logLik+sigma_nu+mu_h+phi+sigma_eta,

data=subset(r.if1,logLik>max(logLik)-20))

30 / 42

Fitting the POMP model to data Likelihood maximization

Likelihood maximization using randomized starting values

As for our other case studies, carrying out searches starting randomly
throughout a large box can lead to reasonble evidence for successful
global maximization.

For our volatility model, a box containing plausible parameter values
might be

sp500_box <- rbind(

sigma_nu=c(0.005,0.05),

mu_h =c(-1,0),

phi = c(0.95,0.99),

sigma_eta = c(0.5,1),

G_0 = c(-2,2),

H_0 = c(-1,1)

)

31 / 42

Fitting the POMP model to data Likelihood maximization

stew(file=sprintf("box_eval-%d.rda",run_level),{
t.box <- system.time({
if.box <- foreach(i=1:sp500_Nreps_global,

.packages=’pomp’,.combine=c) %dopar% mif2(if1[[1]],

params=apply(sp500_box,1,function(x)runif(1,x)))

L.box <- foreach(i=1:sp500_Nreps_global,

.packages=’pomp’,.combine=rbind) %dopar% {
logmeanexp(replicate(sp500_Nreps_eval, logLik(pfilter(

sp500.filt,params=coef(if.box[[i]]),Np=sp500_Np))),

se=TRUE)}
})

})
r.box <- data.frame(logLik=L.box[,1],logLik_se=L.box[,2],

t(sapply(if.box,coef)))

if(run_level>1) write.table(r.box,file="sp500_params.csv",

append=TRUE,col.names=FALSE,row.names=FALSE)

summary(r.box$logLik,digits=5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3996 -3986 -3957 -3966 -3956 -3954

32 / 42

Fitting the POMP model to data Likelihood maximization

This search took 64.1 minutes.

The best likelihood found was -3953.8 with a standard error of 0.2.

We see that optimization attempts from diverse remote starting
points can approach our MLE, but do not exceed it. This gives us
some reasonable confidence in our MLE.

Plotting these diverse parameter estimates can help to give a feel for
the global geometry of the likelihood surface

33 / 42

Fitting the POMP model to data Likelihood maximization

pairs(~logLik+log(sigma_nu)+mu_h+phi+sigma_eta+H_0,

data=subset(r.box,logLik>max(logLik)-10))

34 / 42

Fitting the POMP model to data Likelihood maximization

This preliminary analysis does not show clear evidence for the
hypothesis that σν > 0.

That is likely because we are studying only a subset of the 1988 to
2012 dataset analyzed by Bretó (2014).

Also, it might help to refine our inference be computing a likelihood
profile over σν .

35 / 42

Fitting the POMP model to data Benchmark non-mechanistic models

Benchmark likelihoods for alternative models

To assess the overall success of the model, it is helpful to put the log
likelihoods in the context of simpler models, called benchmarks.

Benchmarks provide a complementary approach to residual analysis
and the investigation of simulations from the fitted model.

The GARCH(1,1) model for this dataset has a maximized likelihood
of -4019.7 with 3 fitted parameters.

Our stochastic volatility model, with time-varying leverage, model has
a maximized log likelihood of -3953.8 with 6 fitted parameters. AIC
favors the stochastic volatility model.

A model which both fits better and has meaningful interpretation has
clear advantages over a simple statistical model.

The disadvantage of the sophisticated modeling and inference is the
extra effort required.

36 / 42

Fitting the POMP model to data Benchmark non-mechanistic models

Can a mechanistic model be helpful if it loses to a
non-mechanistic alternative?

Sometimes, the mechanistic model does not beat simple benchmark
models. That does not necessarily mean the mechanistic model is
entirely useless.

We may be able to learn about the system under investigation from
what a scientifically interpretable model fails to explain.

We may be able to use preliminary results to improve the model, and
subsequently beat the benchmarks.

If the mechanistic model fits disastrously compared to the benchmark,
our model is probably missing something important. We must
reconsider the model, based on clues we might obtain by carrying out
residual analysis and looking at simulations from the fitted model.

37 / 42

Appendix: Deriving an SMC algorithm for zero measurement error

Appendix: Proper weighting for a partially plug-and-play
algorithm with a perfectly observed state space component

Suppose a POMP model with Xn = (Un, Vn) and measurement
model fYn|Xn

(yn |un, vn) = fYn|Vn(yn|vn), depending only on vn.
The proper weight for an SMC proposal density qn(xn|xn−1) is

wn(xn|xn−1) =
fYn|Xn

(y∗n|xn)fXn|Xn−1
(xn|xn−1)

qn(xn|xn−1)
.

Consider the proposal qn(un, vn|xn−1) = fUn|Xn−1
(un|xn−1)gn(vn).

This is partially plug-and-play, in the sense that the Un part of the
proposal is drawn from a simulator of the dynamic system.
Computing the weights, we see that the transition density for the Un
component cancels out and does not have to be computed, i.e.,

wn(xn|xn−1) =
fYn|Vn(y

∗
n|vn)fUn|Xn−1

(un|xn−1)fVn|Un,Xn−1
(vn|un, xn−1)

fUn|Xn−1
(un|xn−1)gn(vn)

=
fYn|Vn(y

∗
n|vn)fVn|Un,Xn−1

(vn|un, xn−1)
gn(vn)

.

38 / 42

Appendix: Deriving an SMC algorithm for zero measurement error

Now consider the case where the Vn component of the state space is
perfectly observed, i.e., Yn = Vn. In this case,

fYn|Vn(yn|vn) = δ(yn − vn),

interpreted as a point mass at vn in the discrete case and a singular
density at vn in the continuous case.

We can choose gn(vn) to depend on the data, and a natural choice is

gn(vn) = δ(y∗n − vn),

for which the proper weight is

wn(xn|xn−1) = fYn|Un,Xn−1
(y∗n|un, xn−1).

This is the situation in the context of our case study, with
Un = (Gn, Hn) and Vn = Yn.

39 / 42

Appendix: Deriving an SMC algorithm for zero measurement error

License, acknowledgments, and links

Licensed under the Creative Commons Attribution-
NonCommercial license. Please share and remix non-
commercially, mentioning its origin.
The materials builds on previous courses.

Compiled on April 6, 2021 using R version 4.0.4.

Back to course homepage

40 / 42

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
../acknowledge.html
../index.html

Appendix: Deriving an SMC algorithm for zero measurement error

References

Bretó C (2014). “On idiosyncratic stochasticity of financial leverage
effects.” Statistics & Probability Letters, 91, 20–26.
doi: 10.1016/j.spl.2014.04.003.

Cowpertwait PS, Metcalfe AV (2009). Introductory time series with R.
Springer Science & Business Media.

Ionides EL, Nguyen D, Atchadé Y, Stoev S, King AA (2015). “Inference
for dynamic and latent variable models via iterated, perturbed Bayes
maps.” Proceedings of the National Academy of Sciences of the U.S.A.,
112(3), 719–724. doi: 10.1073/pnas.1410597112.

Kastner G (2016). “Dealing with stochastic volatility in time series using
the R package stochvol.” Journal of Statistical Software, 69.
doi: 10.18637/jss.v069.i05.

41 / 42

https://doi.org/10.1016/j.spl.2014.04.003
https://doi.org/10.1073/pnas.1410597112
https://doi.org/10.18637/jss.v069.i05

Appendix: Deriving an SMC algorithm for zero measurement error

References II

Shumway RH, Stoffer DS (2017). Time Series Analysis and its
Applications: With R Examples. Springer. URL
http://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf.

42 / 42

http://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf

	Time series models for financial volatility
	The ARCH and GARCH models
	Stochastic volatility models

	Volatility leverage
	Dynamics depending on past observations
	Fitting the POMP model to data
	Likelihood maximization
	Benchmark non-mechanistic models

	Appendix: Deriving an SMC algorithm for zero measurement error
	References

