Question 1.1.

\[\begin{eqnarray} \mathrm{Var}\left(\hat{\mu}\left(Y_{1:N}\right)\right)&=&\mathrm{Var}\left(\frac{1}{N}\sum_{n=1}^{N}Y_{n}\right) \\ &=&\frac{1}{N^{2}}\mathrm{Cov}\left(\sum_{m=1}^{N}Y_{m},\sum_{n=1}^{N}Y_{n}\right) \mbox{ using P1 and P3} \\ &=&\frac{1}{N^{2}}\sum_{m=1}^{N}\sum_{n=1}^{N}\mathrm{Cov}\left(Y_{m},Y_{n}\right) \mbox{ using P4} \\ &=&\frac{1}{N^{2}}\left(N\gamma_{0}+2\left(N-1\right)\gamma_{1}+\ldots+2\gamma_{N-1}\right) \mbox{ using P2 to give $\gamma_h=\gamma_{-h}$} \\ &=&\frac{1}{N}\gamma_{0}+\frac{2}{N^{2}}\sum_{h=1}^{N-1}\left(N-h\right)\gamma_{h} \end{eqnarray}\]


Question 1.2. By definition, \[ \hat{\gamma}_{h}\left(y_{1:N}\right)=\frac{1}{N}\sum_{n=1}^{N-h}\left(y_{n}-\hat{\mu}_{n}\right)\left(y_{n+h}-\hat{\mu}_{n+h}\right). \] Here, we consider the null hypothesis where \(Y_{1:N}\) is IID with mean \(0\) and standard deviation \(\sigma\). We therefore use the estimator \(\hat\mu_n=0\) and the autocovariance function estimator becomes \[\begin{eqnarray} \hat{\gamma}_{h}\left(y_{1:N}\right) &=& \frac{1}{N}\sum_{n=1}^{N-h}y_{n}y_{n+h}, \end{eqnarray}\] We let \(\sum_{n=1}^{N-h}Y_{n}Y_{n+h}=U\) and \(\sum_{n=1}^{N}Y_{n}^{2}=V\), and carry out a first order Taylor expansion of \[\hat\rho_h(Y_{1:N}) = \frac{\hat\gamma_h(y_{1:N})}{\hat\gamma_0(y_{1:N})} = \frac{U}{V}\] about \((\mathbb{E}[U],\mathbb{E}[V])\). This gives \[ \hat{\rho}_{h}(Y_{1:N}) \approx\frac{\mathbb{E}\left(U\right)}{\mathbb{E}\left(V\right)}+\left(U-\mathbb{E}\left(U\right)\right)\left.\frac{\partial}{\partial U}\left(\frac{U}{V}\right)\right|_{\left(\mathbb{E}\left(U\right),\mathbb{E}\left(V\right)\right)}+\left(V-\mathbb{E}\left(V\right)\right)\left.\frac{\partial}{\partial V}\left(\frac{U}{V}\right)\right|_{\left(\mathbb{E}\left(U\right),\mathbb{E}\left(V\right)\right)}. \] We have \[ \mathbb{E}\left(U\right)=\sum_{n=1}^{N-h}\mathbb{E}\left(Y_{n}\, Y_{n+h}\right)=0, \] \[ \mathbb{E}\left(V\right)=\sum_{n=1}^{N}\mathbb{E}\left(Y_{n}^{2}\right)=N\sigma^{2}, \] \[ \frac{\partial}{\partial U}\left(\frac{U}{V}\right)=\frac{1}{V}, \] \[ \frac{\partial}{\partial V}\left(\frac{U}{V}\right)=\frac{-U}{V^{2}}. \] Putting this together, we have \[\begin{eqnarray} \hat{\rho}_{h}(Y_{1:N})&\approx&\frac{\mathbb{E}\left(U\right)}{\mathbb{E}\left(V\right)}+\frac{U}{\mathbb{E}\left(V\right)}-\frac{\left(V-\mathbb{E}\left(V\right)\right)\mathbb{E}(U)}{\mathbb{E}(V)^{2}} \\ &=&\frac{U}{N\sigma^{2}}. \end{eqnarray}\] This gives us an approximation, \[ \mathrm{Var}\left(\hat{\rho}_{h}(Y_{1:N})\right)\approx\frac{\mathrm{Var}\left(U\right)}{N^{2}\sigma^{4}}. \] We now look to compute \[ \mathrm{Var}\left(U\right)= \mathrm{Var}\left(\sum_{n=1}^{N-h}Y_{n}Y_{n+h}\right). \] Since \(Y_{1:N}\) are independent and mean zero, we have \(\mathbb{E}[Y_{n}Y_{n+h}] = 0\) for \(h\neq 0\). Therefore, for \(m\neq n\), \[ \mathrm{Cov}\left(Y_{m}Y_{m+h},Y_nY_{n+h}\right) = \mathbb{E}\left[ Y_{m}Y_{m+h}\, Y_nY_{n+h}\right] = 0. \] Thus, the terms in the sum for \(\mathrm{Var}\left(U\right)\) are uncorrelated for \(m\neq n\) and we have \[\begin{eqnarray} \mathrm{Var}\left(U\right) &=& \sum_{n=1}^{N-h} \mathrm{Var}\left(Y_nY_{n+h}\right) \\ &=& (N-h) \, \mathbb{E}\left[Y_n^2Y_{n+h}^2\right] \\ &=& (N-h) \, \sigma^4 \end{eqnarray}\] Therefore, \[ \mathrm{Var}\left(\hat{\rho}_{h}(Y_{1:N})\right)\approx\frac{\left(N-h\right)}{N^{2}} \] When \(n\rightarrow\infty\), \(\mathrm{Var}\left(\hat{\rho}_h(Y_{1:N})\right)\rightarrow\frac{1}{N}\), justifying a standard deviation under the null hypothesis of \(1/\sqrt{N}\).

B. A 95% confidence interval is a function of the data that constructs a set which (under a spedified model) covers the true parameter with probability 0.95.


Question 1.3.

Credit for sources was awarded following the policy in the syllabus. Full credit was given if sources were listed, with clear attribution at the point where the source was used.