Facts: (1)fX|Y(x|y)=fXY(x,y)fY(y)(2)fX|YZ(x|y,z)=fXY|Z(x,y|z)fY|Z(y|z)(3)fXn|X1:n−1(xn|x1:n−1)=fXn|Xn−1(xn|xn−1).(4)fX|Y(x|y)=∫fXZ|Y(x,z|y)dz(5)fXZ|Y(x,z|y)=fZ|Y(z|y)fX|ZY(x|y,z)(6)fYn|X0:N,Y1:n−1,Yn+1:N(yn|x0:N,y1:n−1,yn+1:N)=fYn|Xn(yn|xn)(7)fX|YZ(x|y,z)=fY|XZ(y|x,z)fX|Z(x|z)fY|Z(y|z)
Question 5.1. Derive the identity [MP2].
fX0:N(x0:N)=fX1:N|X0(x1:N|x0)fX0(x0)by (1)=fX2:N|X0:1(x2:N|x0:1)fX1|X0(x1|x0)fX0(x0)by (2)=fX2:N|X1(x2:N|x1)fX1|X0(x1|x0)fX0(x0)by (3)=…=fX0(x0)N∏n=1fXn|Xn−1(xn|xn−1)by iteration, or formally by induction
Question 5.2. Derive the prediction formula, [MP4].
∫fXn−1|Y1:n−1(xn−1|y∗1:n−1)fXn|Xn−1(xn|xn−1)dxn−1=∫fXn−1|Y1:n−1(xn−1|y∗1:n−1)fXn|Xn−1Y1:n−1(xn|xn−1,y∗1:n−1)dxn−1by (6)=∫fXnXn−1|Y1:n−1(xn,xn−1|y∗1:n−1)dxn−1by (5)=fXn|Y1:n−1(xn|y∗1:n−1)by (4)
Question 5.3. Derive the filtering formulas [MP5] and [MP6].
To show [MP5], fXn|Y1:n(xn|y∗1:n)=fXn|YnY1:n−1(xn|y∗ny∗1:n−1)=fYn|XnY1:n−1(y∗n|xn,y∗1:n−1)fXn|Y1:n−1(xn|y∗1:n−1)fYn|Y1:n−1(y∗n|y∗1:n−1)by (6)=fYn|Xn(y∗n|xn)fXn|Y1:n−1(xn|y∗1:n−1)fYn|Y1:n−1(y∗n|y∗1:n−1)by (7)
To show [MP6], fYn|Y1:n−1(y∗n|y∗1:n−1)=∫fYnXn|Y1:n−1(y∗n,xn|y∗1:n−1)dxnby (4)=∫fXn|Y1:n−1(xn|y∗1:n−1)fYn|XnY1:n−1(y∗n|xn,y∗1:n−1)dxnby (5)=∫fXn|Y1:n−1(xn|y∗1:n−1)fYn|Xn(y∗n|xn)dxnby (6)
Question 5.4. Derive the backward recursion formulas [MP8] and [MP9].
For [MP8], fYn:N|Xn(y∗n:N|xn)=fYn|Xn(y∗n|xn)fYn+1:N|YnXn(y∗n+1:N|y∗n,xn)by (5)=fYn|Xn(y∗n|xn)fYn+1:N|Xn(y∗n+1:N|xn)by (6)
For [MP9], fYn+1:N|Xn(y∗n+1:N|xn)=∫fYn+1:NXn+1|Xn(y∗n+1:N,xn+1|xn)dxn+1by (4)=∫fXn+1|Xn(xn+1|xn)fYn+1:N|Xn+1Xn(y∗n+1:N|xn+1,xn)dxn+1by (5)=∫fXn+1|Xn(xn+1|xn)fYn+1:N|Xn+1(y∗n+1:N|xn+1)dxn+1by (6)
Question 5.5. Derive the smoothing formula [MP10].
fXn|Y1:N(xn|y∗1:N)=fXn|Y1:n−1Yn:N(xn|y∗1:n−1,y∗n:N)=fXn|Y1:n−l(xn|y∗1:n−1)fYn:N|XnY1:n−1(y∗n:N|xn,y∗1:n−1)fYn:N|Y1:n−1(y∗n:N|y∗1:n−1)by (7)=fXn|Y1:n−l(xn|y∗1:n−1)fYn:N|Xn(y∗n:N|xn)fYn:N|Y1:n−1(y∗n:N|y∗1:n−1)by (6)
Question 5.6.
All statements of sources were given full credit as long as they were consistent with the solutions presented.
Parts of this solution are adapted from a previous homework submission by Xiang Gao.