Loading [MathJax]/jax/output/HTML-CSS/jax.js

Facts: (1)fX|Y(x|y)=fXY(x,y)fY(y)(2)fX|YZ(x|y,z)=fXY|Z(x,y|z)fY|Z(y|z)(3)fXn|X1:n1(xn|x1:n1)=fXn|Xn1(xn|xn1).(4)fX|Y(x|y)=fXZ|Y(x,z|y)dz(5)fXZ|Y(x,z|y)=fZ|Y(z|y)fX|ZY(x|y,z)(6)fYn|X0:N,Y1:n1,Yn+1:N(yn|x0:N,y1:n1,yn+1:N)=fYn|Xn(yn|xn)(7)fX|YZ(x|y,z)=fY|XZ(y|x,z)fX|Z(x|z)fY|Z(y|z)


Question 5.1. Derive the identity [MP2].

fX0:N(x0:N)=fX1:N|X0(x1:N|x0)fX0(x0)by (1)=fX2:N|X0:1(x2:N|x0:1)fX1|X0(x1|x0)fX0(x0)by (2)=fX2:N|X1(x2:N|x1)fX1|X0(x1|x0)fX0(x0)by (3)==fX0(x0)Nn=1fXn|Xn1(xn|xn1)by iteration, or formally by induction


Question 5.2. Derive the prediction formula, [MP4].

fXn1|Y1:n1(xn1|y1:n1)fXn|Xn1(xn|xn1)dxn1=fXn1|Y1:n1(xn1|y1:n1)fXn|Xn1Y1:n1(xn|xn1,y1:n1)dxn1by (6)=fXnXn1|Y1:n1(xn,xn1|y1:n1)dxn1by (5)=fXn|Y1:n1(xn|y1:n1)by (4)


Question 5.3. Derive the filtering formulas [MP5] and [MP6].

To show [MP5], fXn|Y1:n(xn|y1:n)=fXn|YnY1:n1(xn|yny1:n1)=fYn|XnY1:n1(yn|xn,y1:n1)fXn|Y1:n1(xn|y1:n1)fYn|Y1:n1(yn|y1:n1)by (6)=fYn|Xn(yn|xn)fXn|Y1:n1(xn|y1:n1)fYn|Y1:n1(yn|y1:n1)by (7)

To show [MP6], fYn|Y1:n1(yn|y1:n1)=fYnXn|Y1:n1(yn,xn|y1:n1)dxnby (4)=fXn|Y1:n1(xn|y1:n1)fYn|XnY1:n1(yn|xn,y1:n1)dxnby (5)=fXn|Y1:n1(xn|y1:n1)fYn|Xn(yn|xn)dxnby (6)


Question 5.4. Derive the backward recursion formulas [MP8] and [MP9].

For [MP8], fYn:N|Xn(yn:N|xn)=fYn|Xn(yn|xn)fYn+1:N|YnXn(yn+1:N|yn,xn)by (5)=fYn|Xn(yn|xn)fYn+1:N|Xn(yn+1:N|xn)by (6)

For [MP9], fYn+1:N|Xn(yn+1:N|xn)=fYn+1:NXn+1|Xn(yn+1:N,xn+1|xn)dxn+1by (4)=fXn+1|Xn(xn+1|xn)fYn+1:N|Xn+1Xn(yn+1:N|xn+1,xn)dxn+1by (5)=fXn+1|Xn(xn+1|xn)fYn+1:N|Xn+1(yn+1:N|xn+1)dxn+1by (6)


Question 5.5. Derive the smoothing formula [MP10].

fXn|Y1:N(xn|y1:N)=fXn|Y1:n1Yn:N(xn|y1:n1,yn:N)=fXn|Y1:nl(xn|y1:n1)fYn:N|XnY1:n1(yn:N|xn,y1:n1)fYn:N|Y1:n1(yn:N|y1:n1)by (7)=fXn|Y1:nl(xn|y1:n1)fYn:N|Xn(yn:N|xn)fYn:N|Y1:n1(yn:N|y1:n1)by (6)


Question 5.6.

All statements of sources were given full credit as long as they were consistent with the solutions presented.


Acknowledgements

Parts of this solution are adapted from a previous homework submission by Xiang Gao.