
Fitting ARMA models in R

MA0 MA1 MA2 MA3 MA4 MA5
AR0 166.78 46.98 7.71 -13.70 -17.62 -24.89
AR1 -37.25 -36.62 -34.74 -33.13 -33.14 -31.18
AR2 -36.52 -37.41 -35.89 -33.89 -33.24 -31.91
AR3 -34.79 -34.43 -32.44 -31.89 -32.05 -32.14
AR4 -33.19 -33.91 -33.48 -33.54 -30.15 -29.52

Question 5.3. What do we learn by interpreting the results in the above
table of AIC values?

Question 5.4. In what ways might we have to be careful not to
over-interpret the results of this table?
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Fitting ARMA models in R

Let’s fit the ARMA(2,1) model recommended by consideration of AIC.

huron_arma21 <- arima(huron_level,order=c(2,0,1))
huron_arma21

Call:
arima(x = huron_level, order = c(2, 0, 1))

Coefficients:
ar1 ar2 ma1 intercept

-0.0561 0.7935 1.0000 176.4591
s.e. 0.0521 0.0525 0.0257 0.1209

sigma^2 estimated as 0.04217: log likelihood = 23.71, aic = -37.41
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Fitting ARMA models in R Examining the AR and MA roots

We can examine the roots of the AR polynomial,

AR_roots <- polyroot(c(1,-coef(huron_arma21)[c("ar1","ar2")]))
AR_roots

[1] 1.158532-0i -1.087774+0i

The roots are just outside the unit circle, suggesting we have a
stationary causal fitted ARMA.

However, the MA root is �1, showing that the fitted model is at the
threshold of non-invertibility.

Do we have a non-invertibility problem? We investigate this using
profile and bootstrap methods. The claimed standard error on the
MA1 coe�cient, from the Fisher information approach used by
arima, is small.
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Fitting ARMA models in R Examining the AR and MA roots

First, we can see if the approximate confidence interval constructed
using profile likelihood is in agreement with the approximate
confidence interval constructed using the observed Fisher information.
To do this, we need to maximize the ARMA likelihood while fixing
the MA1 coe�cient at a range of values. This is done using arima in
the code below.
Note that the fixed argument expects a vector of length p+ q + 1
corresponding to a concatenated vector (�1:p, 1:q, µ). Somehow, the
Gaussian white noise variance, �2, is not included in this
representation. Parameters with NA entries in fixed are estimated.

K <- 500
ma1 <- seq(from=0.2,to=1.1,length=K)
profile_loglik <- rep(NA,K)
for(k in 1:K){

profile_loglik[k] <- logLik(arima(huron_level,order=c(2,0,1),
fixed=c(NA,NA,ma1[k],NA)))

}
plot(profile_loglik~ma1,ty="l")
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Fitting ARMA models in R Examining the AR and MA roots

Question 5.5. Interpret the profile likelihood plot for  1.
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Fitting ARMA models in R Examining the AR and MA roots

Question 5.6. What do you conclude about the Fisher information
confidence interval proposed by arima?

Question 5.7. In what situations is the Fisher information confidence
interval reliable?

Question 5.8. Is this profile likelihood plot, and its statistical
interpretation, reliable? How could you support your opinion on this?
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Fitting ARMA models in R Examining the AR and MA roots

A simulation study

set.seed(578922)
J <- 1000
params <- coef(huron_arma21)
ar <- params[grep("^ar",names(params))]
ma <- params[grep("^ma",names(params))]
intercept <- params["intercept"]
sigma <- sqrt(huron_arma21$sigma2)
theta <- matrix(NA,nrow=J,ncol=length(params),

dimnames=list(NULL,names(params)))
for(j in 1:J){
try({
Y_j <- arima.sim(

list(ar=ar,ma=ma),
n=length(huron_level),
sd=sigma

)+intercept
theta[j,] <- coef(arima(Y_j,order=c(2,0,1)))

})
}
theta <- na.omit(theta)
hist(theta[,"ma1"],freq=FALSE)
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Fitting ARMA models in R Examining the AR and MA roots

This seems consistent with the profile likelihood plot.

A density plot shows this similarity even more clearly.
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Fitting ARMA models in R Examining the AR and MA roots

plot(density(theta[,"ma1"],bw=0.05))

Here, we look at the raw plot for instructional purposes. For a report,
one should improve the default axis labels and title.
Note that arima transforms the model to invertibility. Thus, the
estimated value of ✓1 can only fall in the interval [�1, 1].

range(theta[,"ma1"])

[1] -1 1
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Fitting ARMA models in R Examining the AR and MA roots

A minor technical issue: estimated densities outside [�1, 1] are
artifacts of the density estimation procedure.

Question 5.9. How would you refine this density estimation procedure to
respect the range of the parameter estimation procedure?

We do a simulation study for which we fit ARMA(2,1) when the true
model is AR(1).
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Fitting ARMA models in R Examining the AR and MA roots

Using multiple cores for simulation studies

When doing simulation studies, multicore computing is helpful. All
modern computers have multiple cores.

A basic approach to multicore statistical computing is to tell R you
want it to look for available processors, using the doParallel
package.

We can use foreach in the doParallel package to carry out a
parallel for loop where jobs are sent to di↵erent processors.

library(doParallel)
registerDoParallel()
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Fitting ARMA models in R Examining the AR and MA roots

J <- 1000
huron_ar1 <- arima(huron_level,order=c(1,0,0))
params <- coef(huron_ar1)
ar <- params[grep("^ar",names(params))]
intercept <- params["intercept"]
sigma <- sqrt(huron_ar1$sigma2)
t1 <- system.time(
huron_sim <- foreach(j=1:J) %dopar% {
Y_j <- arima.sim(list(ar=ar),n=length(huron_level),
sd=sigma)+intercept

try(coef(arima(Y_j,order=c(2,0,1))))
}

)
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Fitting ARMA models in R Examining the AR and MA roots

Some of these arima calls did not successfully produce parameter
estimates. The try function lets the simulation proceed despite these
errors. Let’s see how many of them fail:

sum(sapply(huron_sim, function(x) inherits(x,"try-error")))

[1] 1
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Fitting ARMA models in R Examining the AR and MA roots

Now, for the remaining ones, we can look at the resulting estimates of
the MA1 component:

ma1 <- unlist(lapply(huron_sim,function(x)
if(!inherits(x,"try-error"))x["ma1"] else NULL ))

hist(ma1,breaks=50)
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Fitting ARMA models in R Examining the AR and MA roots

When the true model is AR1 and we fit ARMA(2,1), it seems that we
often obtain a model with estimated MA1 coe�cient on the boundary
of invertibility.

Thus, we cannot reject an AR1 hypothesis for the Huron data, even
though the Fisher information based analysis appears to give strong
evidence that the data should be modeled with a nonzero MA1
coe�cient.

It may be sensible to avoid fitted models too close to the boundary of
invertibility. This is a reason not to blindly accept whatever model
AIC might suggest.
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Fitting ARMA models in R Examining the AR and MA roots

Question 5.10. What else could we look for to help diagnose, and
understand, this kind of model fitting problem? Hint: pay some more
attention to the roots of the fitted ARMA(2,1) model.
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Fitting ARMA models in R Assessing numerical correctness

Assessing the numerical correctness of evaluation and

maximization of the likelihood function

We can probably suppose that arima() has negligible numerical error
in evaluating the likelihood.
Likelihood evaluation is a linear algebra computation which should be
numerically stable away from singularities.
Possibly, numerical problems could arise for models very close to
reducibility (canceling AR and MA roots).
Numerical optimization is more problematic.
arima calls the general purpose optimization routine optim.
The likelihood surface can be multimodal and have nonlinear ridges,
when AR and MA roots almost cancel.
No optimization procedure is reliable for maximizing awkward,
non-convex functions.
Evidence for imperfect maximization (assuming negligible likelihood
evaluation error) can be found in the AIC table, copied below.
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Fitting ARMA models in R Assessing numerical correctness

MA0 MA1 MA2 MA3 MA4 MA5
AR0 166.8 47.0 7.7 -13.7 -17.6 -24.9
AR1 -37.2 -36.6 -34.7 -33.1 -33.1 -31.2
AR2 -36.5 -37.4 -35.9 -33.9 -33.2 -31.9
AR3 -34.8 -34.4 -32.4 -31.9 -32.0 -32.1
AR4 -33.2 -33.9 -33.5 -33.5 -30.1 -29.5

Question 5.11. How is this table inconsistent with perfect maximization?

Hint: recall that, for nested hypotheses Hh0i ⇢ H
h1i, the likelihood

maximized over Hh1i cannot be less than the likelihood maximized
over Hh0i.
Recall also the definition of AIC,
AIC = -2⇥ maximized log likelihood + 2⇥ number of parameters
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Fitting ARMA models in R Assessing numerical correctness

Further reading

Section 3.5 of Shumway and Sto↵er (2017) gives a complementary
discussion of parameter estimation for ARMA models.

Section 3.7 of Shumway and Sto↵er (2017) takes a di↵erent
perspective on selecting ARMA models, putting less emphasis on
likelihood. Both perspectives can be valuable.
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