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Introduction to business cycles and mortality

Historical investigations linking business cycles to mortality

Pro-cyclical mortality occurs if death rates are statistically above
trend when economic activity is above trend. An early report was
Ogburn and Thomas (1922).

Procyclical mortality, if it exists, shows that a key measure of
population health is worse in economic booms than in recessions.

Both the economy and life expectancy have grown over the last
century. However, these phenomena have not always occurred
simultaneously. For example, 1950–1980 saw rapid growth in life
expectancy in India and China, combined with relatively slow
economic growth. Improvement in life expectancy has slowed during
their recent economic surges.

The link between economic growth and health improvement is
controversial, since it has political implications. Economists and
epidemiologists have argued both sides of this debate, using time
series methods.
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Introduction to business cycles and mortality

Implications of pro-cyclical mortality

If our goal is population health and happiness, how much should our
policies focus on gross domestic product (GDP) growth?

Evidence supporting the view that economic growth is the critical
engine for other improvements in living conditions would make a
moral argument in favor of economic growth.

Evidence that there are other major factors involved in improving
living conditions suggest that economic growth should be only one
political consideration, among others.

We aim to study the effect of the economy on mortality, not vice
versa. Before the COVID-19 pandemic, the effect of mortality
fluctuations on the economy was considered negligible. We study
data up to 2018.
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Data

A time series of life expectancy in the USA

e_data <- read.table(file="life_expectancy_usa.csv",header=TRUE)

head(e_data,n=4)

Year e0F e0M e0

1933 62.80 59.19 60.90

1934 62.30 58.29 60.19

1935 63.05 58.98 60.91

1936 62.60 58.35 60.35

Data are from the Human Mortality Database.
e0 is life expectancy at birth (LEB) for civilians,
e0F and e0M are LEB for females and males, but we focus on e0.
LEB is an actuarial calculation based on a fictitious individual having
mortality rates at each age matching census age-specific mortality
rates for the current year.
LEB is a standard way to combine all the age-specific mortality rates
into a single number.
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Data

u_data <- read.table(file="unadjusted_unemployment.csv",

sep=",",header=TRUE)

head(u_data,4)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1948 4.0 4.7 4.5 4.0 3.4 3.9 3.9 3.6 3.4 2.9 3.3 3.6

1949 5.0 5.8 5.6 5.4 5.7 6.4 7.0 6.3 5.9 6.1 5.7 6.0

1950 7.6 7.9 7.1 6.0 5.3 5.6 5.3 4.1 4.0 3.3 3.8 3.9

1951 4.4 4.2 3.8 3.2 2.9 3.4 3.3 2.9 3.0 2.8 3.2 2.9

We consider unadjusted unemployment from Bureau of Labor
Statistics.

Unemployment is just one component of the state of the economy.
One could consider other measurements.

Write en for life expectancy in year tn = 1947 + n.

Write un for mean unemployment in year tn.
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Data

A time plot of the raw data

t <- intersect(e_data$Year,u_data$Year)

e <- e_data$e0[e_data$Year %in% t]

u <- apply(u_data[u_data$Year %in% t, 2:13],1,mean)

We are interested in changes over business cycle timescales, once
trends have been removed.
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Detrending the data

The Hodrick-Prescott filter

To extract the cyclical component, we use an econometric method:
the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997).

Specifically, for a time series y∗1:N , the HP filter is the time series s∗1:N
constructed as

s∗1:N = argmin
s1:N

{
N∑
n=1

(
y∗n − sn

)2
+ λ

N−1∑
n=2

(
sn+1 − 2sn + sn−1

)2}
. (1)

The HP filter is a smoothing spline. Later, we see it can also be
viewed as a state space model.

A standard econometric choice of λ for removing nonlinear trend, for
extracting the business cycle component, in annual data is λ = 100.

An R implementation of the Hodrick-Prescott filter is hpfilter in
the R package mFilter.
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Detrending the data

We use the Hodrick-Prescott filter to define the HP-detrended life
expectancy, eHP1:N , and unemployment, uHP1:N .

library(mFilter)

e_hp <- hpfilter(e, freq=100,type="lambda",drift=F)$cycle

u_hp <- hpfilter(u, freq=100,type="lambda",drift=F)$cycle

Plotting two time series on a single graph is not always advisable, but
here it is helpful.

plot(t,u_hp,type="l",xlab="",ylab="detrended unemployment")

par(new=TRUE)

plot(t,e_hp,col="red",type="l",axes=FALSE,xlab="",ylab="")

axis(side=4, col="red",col.ticks="red",col.axis="red")

mtext("detrended e0",side=4,col="red",line=3)
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Detrending the data

Detrended unemployment (black; left axis) and detrended life expectancy
at birth (red; right axis).

Looking at this figure may suggest that detrended life expectancy and
detrended unemployment cycle together.

We make a formal statistical test to check our eyes are not deceiving
us.
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Hypothesis testing: regression with ARMA errors

A regression with ARMA errors model

We can investigate the dependence of eHP1:N on uHP1:N using a regression
with ARMA errors model,

EHPn = α+ βuHPn + εn, (2)

where {εn} is a Gaussian ARMA process. We use an ARMA(1,0)
model, as discussed in the supplementary analysis.

a0 <- arima(e_hp,xreg=u_hp,order=c(1,0,0))

Coefficients:

ar1 intercept u_hp

0.4798 -0.0030 0.0713

s.e. 0.1042 0.0304 0.0181

sigma^2 estimated as 0.0182

log likelihood = 41.26, aic = -74.52
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Hypothesis testing: regression with ARMA errors

The standard error (computed via observed Fisher information) gives
a z-statistic of 0.0713/0.0181 = 3.94 for the coefficient of detrended
unemployment.

We can also compute a p-value from a likelihood ratio test,

log_lik_ratio <- as.numeric(

logLik(arima(e_hp,xreg=u_hp,order=c(1,0,0))) -

logLik(arima(e_hp,order=c(1,0,0)))

)

LRT_pval <- 1-pchisq(2*log_lik_ratio,df=1)

This gives a p-value of 0.00018.

We have clear statistical evidence for a positive association between
detrended unemployment and detrended life expectancy.

For all observational studies, interpretation of association needs care.
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Association and causation

Association and causation

We have been careful to talk about association, since observational
data giving firm statistical evidence of an assocation between X and
Y cannot readily distinguish between three possibilities:

1 X causes Y .

2 Y causes X.

3 Both X and Y are caused by a third variable Z that is unmeasured or
has been omitted from the analysis. In this case, Z is called a
confounding variable.

Here, it is not considered plausible that mortality fluctations drive
economic fluctuations (the reverse causation possibility).

Unemployment is a proxy variable for economic fluctuations.
Increased unemployment itself is necessarily directly causing reduced
mortality: all proxy variables for economic activity are confounded in
this analysis.
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Looking for dependence in bivariate time series Cross-correlation

Potential lagged relationships

A potential confounding variable is lagged economic activity.
Theoretically, reduction in mortality for an current economic
down-turn could result from delayed health progress caused by the
previous economic boom.

A lag relationship between two time series x1:N and y1:N can be
identified from the sample cross-correlation function (CCF)

ρ̂xy(h) =

∑N−h
n=1 (xn+h − x̄)(yn − ȳ)√∑N

n=1(xn − x̄)2
∑N

n=1(yn − ȳ)2
(3)

ρ̂xy(h) estimates ρXY (h) = Cor
(
Xn+h, Yn

)
, the cross-correlation at

lag h for a bivariate stationary time series model, consisting of a
pair of random variables

(
Xn, Yn

)
at each time n.
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Looking for dependence in bivariate time series Cross-correlation

ccf(e_hp,u_hp)

The strong positive cross-correlation at lag zero supports pro-cyclical
mortality.

The oscillatory pattern is not significant pointwise but might be more
evident in the frequency domain.
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Looking for dependence in bivariate time series The cross-spectrum, coherence and phase

Cross-covariance and the cross-spectrum

The cross-covariance function of a stationary bivariate time series
model,

(
Xn, Yn

)
, is

γXY (h) = Cov
(
Xn+h, Yn

)
. (4)

The cross-spectrum is the Fourier transform of the cross-covariance,

λXY (ω) =

∞∑
h=−∞

e−2πiωhγXY (h). (5)

The cross-spectrum can be estimated by smoothing the bivariate
periodogram, using spectrum in R.
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Looking for dependence in bivariate time series The cross-spectrum, coherence and phase

Coherency, coherence and phase

The coherency is the normalized cross-spectrum,

ρXY (ω) =
λXY (ω)√

λXX(ω)λY Y (ω)
. (6)

Coherency measures correlation between frequency components of
two time series at each frequency ω. It is complex-valued.
The magnitude of the coherency is called the coherence. It measures
whether a large amplitude at frequency ω for x1:N is associated with
a large amplitude at ω for y1:N .
The angle of the coherency (in the complex plane) is called the
phase. A phase of 0 means that peaks at frequency ω tend to occur
simultaneously for x1:N and y1:N . A phase of ±π at frequency ω
means that peaks for the frequency component of x1:N coincide with
troughs for y1:N
The coherence and phase are estimated is estimated from the
smoothed cross-periodogram and marginal periodograms.
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Looking for dependence in bivariate time series The cross-spectrum, coherence and phase

s <- spectrum(cbind(e_hp,u_hp),spans=c(3,5,3),plot=F)

plot(s,plot.type="coherency",main="")

R calculates squared coherence, the squared absolute coherency. This
is like reporting r2 for regression, rather than |r|.

Question 9.1. Interpret the squared coherence plot.
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Looking for dependence in bivariate time series The cross-spectrum, coherence and phase

plot(s,plot.type="phase",main="")

abline(h=0,col="red")

Question 9.2. Interpret the phase plot.
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Looking for dependence in bivariate time series The cross-spectrum, coherence and phase

Conclusions

There is strong evidence of pro-cyclical mortality at a national level in
the USA from 1948 to 2018. For example, the Great Recession of
2009-2010 led to high unemployment, but these two years had
above-trend values of life expectancy at birth.

We have argued that this evidence supports a claim that above-trend
economic growth CAUSES above-trend mortality.

We CANNOT infer that unemployment reduces mortality for those
who lose their jobs. Adverse individual-level effects of unemployment
can be reconciled with our result (Tapia Granados et al., 2014).

More data might give statistical precision to investigate
sub-populations more accurately than can be done with a
national-level dataset. For example, panel data analysis combining
time series for each state (Ionides et al., 2013).
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Supplementary analysis Model selection by AIC

Explaining the choice of an ARMA(1,0) error model

Model selection by AIC for regression with ARMA errors follows the
same approach as for ARMA models.

aic_table <- function(data,P,Q,xreg=NULL){
table <- matrix(NA,(P+1),(Q+1))

for(p in 0:P) {
for(q in 0:Q) {

table[p+1,q+1] <- arima(data,order=c(p,0,q),xreg=xreg)$aic

}
}
dimnames(table) <- list(paste("AR",0:P, sep=""),

paste("MA",0:Q,sep=""))

table

}
e_aic_table <- aic_table(e_hp,4,5,xreg=u_hp)

require(knitr)

kable(e_aic_table,digits=2)

21 / 31



Supplementary analysis Model selection by AIC

MA0 MA1 MA2 MA3 MA4 MA5
AR0 -58.16 -70.90 -73.08 -74.29 -73.86 -72.33
AR1 -74.52 -72.52 -72.23 -73.19 -79.41 -77.44
AR2 -72.52 -70.52 -72.33 -71.79 -77.46 -78.56
AR3 -72.19 -79.45 -70.40 -70.16 -75.69 -79.91
AR4 -74.43 -73.52 -72.35 -79.08 -76.08 -78.89

ARMA(1,0) gives the best AIC among small models.

Some larger models have better AIC, but notice inconsistencies in the
AIC table. For example, consider ARMA(3,1) errors:

a3 <- arima(e_hp,xreg=u_hp,order=c(3,0,1))

ar1 ar2 ar3 ma1 intercept u_hp

1.3013 -0.3034 -0.1756 -1.0000 -0.0008 0.0788

s.e. 0.1162 0.1912 0.1192 0.0377 0.0038 0.0185

sigma^2 estimated as 0.0150

log likelihood = 46.72, aic = -79.45
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Supplementary analysis Model selection by AIC

The estimated ARMA(3,1) is at the boundary of invertiblity, with an
MA1 coefficient on the unit circle.

This is reminiscent of our earlier analysis of the Lake Huron depth
data.

Likely the ARMA(3,1) analysis is not very stable. A simulation study
might find that the Fisher confidence intervals are not reliable.
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Supplementary analysis Consistency through time

A useful relationship should be consistent through time. We check
this by repeating the analysis on temporal subsets.

t1 <- 1:35

a1 <- arima(e_hp[t1],xreg=u_hp[t1],order=c(1,0,0))

ar1 intercept u_hp[t1]

0.5040 0.0036 0.0851

s.e. 0.1449 0.0531 0.0274

t2 <- 37:71

a2 <- arima(e_hp[t2],xreg=u_hp[t2],order=c(1,0,0))

ar1 intercept u_hp[t2]

0.4277 -0.0071 0.0558

s.e. 0.1533 0.0302 0.0231

The difference is small compared to the standard error. Overall there
is consistency through this 71 year interval, though the pattern is
weak in the 1990s.
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Supplementary analysis Residual analysis

Residual analysis

We inspect the residuals for the fitted model, and look at their
sample autocorrelation.

r <- resid(arima(e_hp,xreg=u_hp,order=c(1,0,0)))

plot(r)

There is some evidence for fluctuations decreasing in amplitude over
time. This is an example of heteroskedasticity. It is not extreme
here, but could be studied in a future analysis.
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Supplementary analysis Residual analysis

acf(r)

It is not a major model violation to have one out of 18 lags narrowly
outside the dashed lines showing pointwise acceptance regions at the
5% level under a null hypothesis of Gaussian white noise.

The presence of some small amount of sample autocorrelation is
consistent with the AIC table, which finds the possibility of gains by
fitting larger models to the regression errors.
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Supplementary analysis Residual analysis

Analysis of temporal differences

One might model annual changes in life expectancy, rather than
difference from a trend. In this case, we consider the variable

∆en = en − en−1, (7)

computed as

delta_e <- e - e_data$e0[e_data$Year %in% (t-1)]
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Supplementary analysis Residual analysis

The relationship between unemployment and differenced life
expectancy is harder to see than when HP-detrended.

The relationship is also harder to find by statistical methods:

a4 <- arima(delta_e,xreg=u_hp,order=c(1,0,1))

ar1 ma1 intercept u_hp

0.7482 -0.6023 0.1740 0.0496

s.e. 0.1936 0.2157 0.0351 0.0228

sigma^2 estimated as 0.0364

log likelihood = 16.84, aic = -23.67

Temporal differencing z-statistic of 0.0496/0.0228 = 2.17 which is
weaker evidence than the z-statistic of 3.94 for HP-detrended LEB.
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Supplementary analysis Multiple testing

Multiple testing considerations

A scientific principle for interpreting experimental results is as follows:
An experiment which finds evidence of an effect is usually a
better foundation for future investigations than one which fails
to find evidence.

The experiment which found no evidence of an effect might have been
a bad choice of experiment, or might have been carried out poorly.

The principle of preference for methods giving positive results must
be balanced with consideration of multiple testing. If we make 20
hypothesis tests, we expect one to be significant at the 5% level just
by chance. There is a danger in trying many approaches and settling
on one that claims statistical significance.

The generalizability of any result is tentative until confirmed in other
studies.
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Supplementary analysis Multiple testing
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Supplementary analysis Multiple testing
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