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Objectives

This tutorial develops some classes of dynamic models relevant to
biological systems, especially for epidemiology.

1 Dynamic systems can often be represented in terms of flows between
compartments.

2 We develop the concept of a compartmental model for which we
specify rates for the flows between compartments.

3 We show how deterministic and stochastic versions of a
compartmental model are derived and related.

4 We introduce Euler’s method to simulate from dynamic models.

5 We specify deterministic and stochastic compartmental models in
pomp using Euler method simulation.
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Compartment models Example: the SIR model

A basic compartment model: The SIR model

We develop deterministic and stochastic representations of a
susceptible-infected-recovered (SIR) system, a fundamental class of
models for disease transmission dynamics.

We set up notation applicable to general compartment models (Bretó
et al., 2009).
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Compartment models Example: the SIR model

A basic compartment model: The SIR model II
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S : susceptible I : infected and infectious
R : recovered and/or removed C : reported cases
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Compartment models Example: the SIR model

A basic compartment model: The SIR model III

We suppose that each arrow has an associated rate, so here there is a
rate µSI(t) at which individuals in S transition to I, and µIR at
which individuals in I transition to R.

To account for demography (births/deaths/migration) we allow the
possibility of a source and sink compartment, which is not usually
represented on the flow diagram. We write µ•S for a rate of births
into S, and denote mortality rates by µS•, µI•, µR•.
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Compartment models Example: the SIR model

A basic compartment model: The SIR model IV

The rates may be either constant or varying. In particular, for a
simple SIR model, the recovery rate µIR is a constant but the
infection rate has the time-varying form

µSI(t) = β I(t),

with β being the transmission rate. For the simplest SIR model,
ignoring demography, we set

µ•S = µS• = µI• = µR• = 0.
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Compartment models Notation

General notation for compartment models

To develop a systematic notation, it turns out to be convenient to
keep track of the flows between compartments as well as the number
of individuals in each compartment. Let

NSI(t)

count the number of individuals who have transitioned from S to I by
time t. We say that NSI(t) is a counting process. A similarly
constructed process

NIR(t)
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Compartment models Notation

General notation for compartment models II

counts individuals transitioning from I to R. To include demography,
we could keep track of birth and death events by the counting
processes N•S(t), NS•(t), NI•(t), NR•(t).

For discrete population compartment models, the flow counting
processes are non-decreasing and integer valued.

For continuous population compartment models, the flow counting
processes are non-decreasing and real valued.
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Compartment models Notation

Compartment processes from counting processes

The numbers of people in each compartment can be computed via
these counting processes. Ignoring demography, we have:

S(t) = S(0)−NSI(t)

I(t) = I(0) +NSI(t) −NIR(t)

R(t) = R(0) +NIR(t)

These equations represent conservation of individuals or what goes in
must come out.
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Compartment models A deterministic interpretation

Ordinary differential equation interpretation

Together with initial conditions specifying S(0), I(0) and R(0), we just
need to write down ordinary differential equations (ODEs) for the flow
counting processes. These are:

dNSI

dt
= µSI(t)S(t)

dNIR

dt
= µIR I(t)
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Compartment models A stochastic interpretation

Continuous-time Markov chain interpretation

Continuous-time Markov chains are the basic tool for building discrete
population epidemic models.

The Markov property lets us specify a model by the transition
probabilities on small intervals (together with the initial conditions).
For the SIR model, we have

P
[
NSI(t+ δ)=NSI(t) + 1

]
= µSI(t)S(t) δ + o(δ)

P
[
NSI(t+ δ)=NSI(t)

]
=1− µSI(t)S(t) δ + o(δ)

P
[
NIR(t+ δ)=NIR(t) + 1

]
= µIR I(t) δ + o(δ)

P
[
NIR(t+ δ)=NIR(t)

]
=1− µIR(t) I(t) δ + o(δ)

Here, we are using little o notation We write h(δ) = o(δ) to mean

limδ→0
h(δ)
δ = 0.
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Compartment models A stochastic interpretation

Exercise 2.1

What is the link between little o notation and the derivative? Explain why

f(x+ δ) = f(x) + δg(x) + o(δ)

is the same statement as
df

dx
= g(x).

What considerations might help you choose which of these notations to
use?

Worked solution to the Exercise
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Compartment models A stochastic interpretation

Simple counting processes

A simple counting process is one which cannot count more than
one event at a time.

Technically, the SIR Markov chain model we have written is simple.

One may want to model the extra randomness resulting from multiple
simultaneous events: someone sneezing in a bus; large gatherings at
football matches; etc. This extra randomness may even be critical to
match the variability in data.

Later in the course, we may see situations where this extra
randomness plays an important role. Setting up the model using
counting processes, as we have done here, turns out to be useful for
this.
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Euler’s method Numerical solution of deterministic dynamics

Euler’s method for ordinary differential equations

Euler (1707–1783) wanted a numeric solution of an ordinary
differential equation (ODE) dx/dt = h(x) with an initial condition
x(0).

He supposed this ODE has some true solution x(t) which could not
be worked out analytically. He wanted an approximation x̃(t) of x(t).

He initialized the numerical solution at the known starting value,

x̃(0) = x(0).
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Euler’s method Numerical solution of deterministic dynamics

Euler’s method for ordinary differential equations II

For k = 1, 2, . . . , he supposed that the gradient dx/dt is
approximately constant over the small time interval
kδ ≤ t ≤ (k + 1)δ. Therefore, he defined

x̃
(
(k + 1)δ

)
= x̃(kδ) + δ h

(
x̃(kδ)

)
.

This only defines x̃(t) when t is a multiple of δ, but suppose x̃(t) is
constant between these discrete times.

We now have a numerical scheme, stepping forwards in time
increments of size δ, that can be readily evaluated by computer.
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Euler’s method Numerical solution of deterministic dynamics

Euler’s method versus other numerical methods

Mathematical analysis of Euler’s method says that, as long as the
function h(x) is not too exotic, then x(t) is well approximated by x̃(t)
when the discretization time-step, δ, is sufficiently small.

Euler’s method is not the only numerical scheme to solve ODEs.
More advanced schemes have better convergence properties, meaning
that the numerical approximation is closer to x(t). However, there are
3 reasons we choose to lean heavily on Euler’s method:

1 Euler’s method is the simplest (cf. the KISS principle).
2 Euler’s method extends naturally to stochastic models, both

continuous-time Markov chains models and stochastic differential
equation (SDE) models.

3 Close approximation of the numerical solutions to a continuous-time
model is less important than it may at first appear, a topic to be
discussed.

18 / 53



Euler’s method Numerical solution of deterministic dynamics

Continuous-time models and discretized approximations

In some physical and engineering situations, a system follows an ODE
model closely. For example, Newton’s laws provide a very good
approximation to the motions of celestial bodies.

In many biological situations, ODE models only become close
mathematical approximations to reality at reasonably large scale. On
small temporal scales, models cannot usually capture the full scope of
biological variation and biological complexity.

If we are going to expect substantial error in using x(t) to model a
biological system, maybe the numerical solution x̃(t) represents the
system being modeled as well as x(t) does.
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Euler’s method Numerical solution of deterministic dynamics

Continuous-time models and discretized approximations II

If our model fitting, model investigation, and final conclusions are all
based on our numerical solution x̃(t) (i.e., we are sticking entirely to
simulation-based methods) then we are most immediately concerned
with how well x̃(t) describes the system of interest. x̃(t) becomes
more important than the original model, x(t).
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Euler’s method Numerical solution of deterministic dynamics

Numerical solutions as scientific models

It is important that a scientist fully describe the numerical model
x̃(t). Arguably, the main purpose of the original model x(t) is to give
a succinct description of how x̃(t) was constructed.

All numerical methods are, ultimately, discretizations.
Epidemiologically, setting δ to be a day, or an hour, can be quite
different from setting δ to be two weeks or a month. For
continuous-time modeling, we still require that δ is small compared to
the timescale of the process being modeled, so the choice of δ should
not play an explicit role in the interpretation of the model.

Putting more emphasis on the scientific role of the numerical solution
itself reminds you that the numerical solution has to do more than
approximate a target model in some asymptotic sense: the numerical
solution should be a sensible model in its own right.
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Euler’s method Numerical solution of deterministic dynamics

Euler’s method for a discrete SIR model

Recall the simple continuous-time Markov chain interpretation of the
SIR model without demography:

P
[
NSI(t+ δ)=NSI(t) + 1

]
=µSI(t)S(t)δ + o(δ),

P
[
NIR(t+ δ)=NIR(t) + 1

]
=µIR I(t)δ + o(δ).

We want a numerical solution with state variables S̃(kδ), Ĩ(kδ),
R̃(kδ).
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Euler’s method Numerical solution of deterministic dynamics

Euler’s method for a discrete SIR model II

The counting processes for the flows between compartments are
ÑSI(t) and ÑIR(t). The counting processes are related to the
numbers of individuals in the compartments by the same flow
equations we had before:

S̃(kδ) = S(0)− ÑSI(kδ)

Ĩ(kδ) = I(0) + ÑSI(kδ)− ÑIR(kδ)

R̃(kδ) = R(0) + ÑIR(kδ)

We focus on a numerical solution to NSI(t), since the same methods
can also be applied to NIR(t).
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Euler’s method Numerical solution of stochastic dynamics

Three different stochastic Euler solutions

(1) A Poisson approximation.

ÑSI(t+ δ) = ÑSI(t) + Poisson
[
µSI

(
Ĩ(t)

)
S̃(t) δ

]
,

where Poisson(µ) is a Poisson random variable with mean µ and

µSI

(
Ĩ(t)

)
= β Ĩ(t).

(2) A binomial approximation,

ÑSI(t+ δ) = ÑSI(t) + Binomial
[
S̃(t), µSI

(
Ĩ(t)

)
δ
]
,

where Binomial(n, p) is a binomial random variable with mean np and
variance np(1− p). Here, p = µSI

(
Ĩ(t)

)
δ.

(3) A binomial approximation with exponential transition probabilities.

ÑSI(t+ δ) = ÑSI(t) + Binomial
[
S̃(t), 1− exp

{
− µSI

(
Ĩ(t)

)
δ
}]
.

Analytically, it is usually easiest to reason using (1) or (2).
Practically, it is usually preferable to work with (3).
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Euler’s method Numerical solution of stochastic dynamics

Compartment models as stochastic differential equations

The Euler method extends naturally to stochastic differential
equations (SDEs).

A natural way to add stochastic variation to an ODE dx/dt = h(x) is

dX

dt
= h(X) + σ

dB

dt

where {B(t)} is Brownian motion and so dB/dt is Brownian noise.

An Euler approximation X̃(t) is

X̃
(
(k + 1)δ

)
= X̃(kδ) + δ h

(
X̃kδ)

)
+ σ

√
δ Zk

where Z1, Z2, . . . is a sequence of independent standard normal
random variables, i.e., Zk ∼ N [0, 1].
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Euler’s method Numerical solution of stochastic dynamics

Compartment models as stochastic differential equations II

Although SDEs are often considered an advanced topic in probability,
the Euler approximation doesn’t demand much more than familiarity
with the normal distribution.
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Euler’s method Numerical solution of stochastic dynamics

Exercise 2.2. Euler’s method vs Gillespie’s algorithm

A widely used, exact simulation method for continuous time Markov
chains is Gillespie’s algorithm. We do not put much emphasis on
Gillespie’s algorithm here. Why? When would you prefer an
implementation of Gillespie’s algorithm to an Euler solution?

Worked solution to the Exercise

Numerically, Gillespie’s algorithm is often approximated using so-called
tau-leaping methods. These are closely related to Euler’s approach. In this
context, the Euler method has sometimes been called tau-leaping.
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Compartment models in pomp
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Compartment models in pomp A basic pomp model for measles

The Consett measles outbreak

As an example that we can probe in some depth, let’s look at outbreak of
measles that occurred in the small town of Consett in England in 1948.
The town had population of 38820, with 737 births over the course of the
year.

29 / 53



Compartment models in pomp A basic pomp model for measles

The Consett measles outbreak II

We download the data and examine them:

library(tidyverse)

read_csv(paste0("https://kingaa.github.io/sbied/stochsim/",

"Measles_Consett_1948.csv")) %>%

select(week,reports=cases) -> meas

meas %>% as.data.frame() %>% head()

week reports

1 0

2 0

3 2

4 0

5 3

6 0
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Compartment models in pomp A basic pomp model for measles

The Consett measles outbreak III
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Compartment models in pomp A basic pomp model for measles

A simple POMP model for measles

These are incidence data: The reports variable counts the number
of reports of new measles cases each week.

Let us model the outbreak using the simple SIR model.

Our tasks will be, first, to estimate the parameters of the SIR and,
second, to decide whether or not the SIR model is an adequate
description of these data.

The rate at which individuals move from S to I is the force of
infection, µSI = β I/N , while that at which individuals move into
the R class is µIR.
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Compartment models in pomp A basic pomp model for measles

Framing the SIR as a POMP model

The unobserved state variables, in this case, are the numbers of
individuals, S(t), I(t), R(t) in the S, I, and R compartments,
respectively.

It’s reasonable in this case to view the population size
N = S(t) + I(t) +R(t), as fixed at the known population size of
38,000.

The numbers that actually move from one compartment to another
over any particular time interval are modeled as stochastic processes.

In this case, we’ll assume that the stochasticity is purely
demographic, i.e., that each individual in a compartment at any given
time faces the same risk of exiting the compartment.

Demographic stochasticity is the unavoidable randomness that
arises from chance events occurring in a discrete and finite population.
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Compartment models in pomp A basic pomp model for measles

Implementing the SIR model in pomp

To implement the model in pomp, the first thing we need is a
stochastic simulator for the unobserved state process.

We follow method 3 above, modeling the number, ∆NSI , moving
from S to I over interval ∆t as

∆NSI ∼ Binomial
(
S, 1− e−β I

N
∆t
)
,

and the number moving from I to R as

∆NIR ∼ Binomial
(
I, 1− e−µIR ∆t

)
.
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Compartment models in pomp A basic pomp model for measles

Implementing the SIR model in pomp II

sir_step <- function (S, I, R, N, Beta, mu_IR, delta.t, ...) {
dN_SI <- rbinom(n=1,size=S,prob=1-exp(-Beta*I/N*delta.t))

dN_IR <- rbinom(n=1,size=I,prob=1-exp(-mu_IR*delta.t))

S <- S - dN_SI

I <- I + dN_SI - dN_IR

R <- R + dN_IR

c(S = S, I = I, R = R)

}

At day zero, we’ll assume that I = 1 but we don’t know how many
people are susceptible, so we’ll treat this fraction, η, as a parameter
to be estimated.

sir_rinit <- function (N, eta, ...) {
c(S = round(N*eta), I = 1, R = round(N*(1-eta)))

}
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Compartment models in pomp A basic pomp model for measles

Implementing the SIR model in pomp III

We fold these basic model components, with the data, into a pomp

object thus:

library(pomp)

meas %>%

pomp(times="week",t0=0,

rprocess=euler(sir_step,delta.t=1/7),

rinit=sir_rinit

) -> measSIR

Now assume the case reports result from a process by which new
infections are diagnosed and reported with probability ρ, which we
can think of as the probability that a child’s parents take the child to
the doctor, who recognizes measles and reports it to the authorities.
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Compartment models in pomp A basic pomp model for measles

Implementing the SIR model in pomp IV

Measles symptoms tend to be quite recognizable, and children with
measles tend to be confined to bed. Therefore diagnosed cases have,
presumably, a much lower transmission rate. Accordingly, let’s treat
each week’s reports as being related to the number of individuals
who have moved from I to R over the course of that week.

We need a variable to track these daily counts. We modify our
rprocess function above, adding a variable H to tally the true
incidence.
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Compartment models in pomp A basic pomp model for measles

Implementing the SIR model in pomp V

sir_step <- function (S, I, R, H, N, Beta, mu_IR, delta.t, ...)

{
dN_SI <- rbinom(n=1,size=S,prob=1-exp(-Beta*I/N*delta.t))

dN_IR <- rbinom(n=1,size=I,prob=1-exp(-mu_IR*delta.t))

S <- S - dN_SI

I <- I + dN_SI - dN_IR

R <- R + dN_IR

H <- H + dN_IR;

c(S = S, I = I, R = R, H = H)

}

sir_rinit <- function (N, eta, ...) {
c(S = round(N*eta), I = 1, R = round(N*(1-eta)), H = 0)

}
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Compartment models in pomp A basic pomp model for measles

Implementing the SIR model in pomp VI

In pomp terminology, H is an accumulator variable. Since we want
H to tally only the incidence over the week, we’ll need to reset it to
zero at the beginning of each week. We accomplish this using the
accumvars argument to pomp:

measSIR %>%

pomp(

rprocess=euler(sir_step,delta.t=1/7),

rinit=sir_rinit, accumvars="H"

) -> measSIR

Now, we’ll model the data by a negative binomial variable,

reportst ∼ NegBin (ρH(t), k) .

with mean ρH(t) and variance ρH(t) +
(
ρH(t)

)2
/k. The binomial

distribution does not have a separate variance parameter.
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Compartment models in pomp A basic pomp model for measles

Implementing the SIR model in pomp VII

Now, to include the observations in the model, we must write either a
dmeasure or an rmeasure component, or both:

sir_dmeas <- function (reports, H, rho, k, log, ...) {
dnbinom(x=reports, size=k, mu=rho*H, log=log)

}

sir_rmeas <- function (H, rho, k, ...) {
c(reports=rnbinom(n=1, size=k, mu=rho*H))

}
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Compartment models in pomp A basic pomp model for measles

Implementing the SIR model in pomp VIII

We then put these into our pomp object:

measSIR %>%

pomp(

rmeasure=sir_rmeas,

dmeasure=sir_dmeas

) -> measSIR
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Compartment models in pomp C snippets

Specifying model components using C snippets

Although we can always specify basic model components using R
functions, as above, we’ll typically want the computational speed-up
that we can obtain only by using compiled native code.

pomp provides a facility for doing so with ease, using C snippets.

C snippets are small pieces of C code used to specify basic model
components.

For example, a C snippet encoding the rprocess for an sir model is
as follows.
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Compartment models in pomp C snippets

Specifying model components using C snippets II

sir_step <- Csnippet("

double dN_SI = rbinom(S,1-exp(-Beta*I/N*dt));

double dN_IR = rbinom(I,1-exp(-mu_IR*dt));

S -= dN_SI;

I += dN_SI - dN_IR;

R += dN_IR;

H += dN_IR;

")
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Compartment models in pomp C snippets

Specifying model components using C snippets III

C snippets for the initializer and measurement model are:

sir_rinit <- Csnippet("

S = nearbyint(eta*N);

I = 1;

R = nearbyint((1-eta)*N);

H = 0;

")

sir_dmeas <- Csnippet("

lik = dnbinom_mu(reports,k,rho*H,give_log);

")

sir_rmeas <- Csnippet("

reports = rnbinom_mu(k,rho*H);

")
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Compartment models in pomp C snippets

Specifying model components using C snippets IV

A call to pomp replaces the basic model components with these, much
faster, implementations:

measSIR %>%

pomp(rprocess=euler(sir_step,delta.t=1/7),

rinit=sir_rinit,

rmeasure=sir_rmeas,

dmeasure=sir_dmeas,

accumvars="H",

statenames=c("S","I","R","H"),

paramnames=c("Beta","mu_IR","N","eta","rho","k")

) -> measSIR

Note that, when using C snippets, one has to tell pomp which of the
variables referenced in the C snippets are state variables and which
are parameters. This is accomplished using the statenames and
paramnames arguments.
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Compartment models in pomp Choosing parameters

Guessing plausible parameter values

To check the code is working properly, we simulate. This requires us
to assign parameters. A little thought will get us some ballpark
estimates.

Recall that R0 is the expected number of secondary infections
resulting from one primary infection introduced into a fully susceptible
population. For an SIR infection, one has that R0 ≈ L

A , where L is
the lifespan of a host and A is the mean age of infection. Analysis of
age-stratified serology data establish that the mean age of infection
for measles during this period was around 4–5yr (Anderson and May,
1991). Assuming a lifespan of 60–70yr, we have R0 ≈ 15.
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Compartment models in pomp Choosing parameters

Guessing plausible parameter values II

The basic theory of SIR epidemics gives the final-size equation,

R0 = − log (1− f)

f
,

where f is the final size of the epidemic—the fraction of those
susceptible at the beginning of the outbreak who ultimately become
infected. For R0 > 5, this equation predicts that f > 0.99.

In the data, it looks like there were a total of 521 infections.
Assuming 50% reporting, we have that S0 ≈ 1042, so that
η = S0

N ≈ 0.027.

If the infectious period is roughly 2 weeks, then 1/µIR ≈ 2 wk and
β = µIR R0 ≈ 7.5 wk−1.

47 / 53

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides



Compartment models in pomp Choosing parameters

Guessing plausible parameter values III

Let’s simulate the model at these parameters.

measSIR %>%

simulate(

params=c(Beta=7.5,mu_IR=0.5,rho=0.5,k=10,

eta=0.03,N=38000),

nsim=20,format="data.frame",include.data=TRUE

) -> sims

sims %>%

ggplot(aes(x=week,y=reports,group=.id,color=.id=="data"))+

geom_line()+

guides(color=FALSE)
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Compartment models in pomp Choosing parameters

Guessing plausible parameter values IV

The data are in blue; the 20 simulations are shown in red.
Clearly, this leaves something to be desired. In the exercises, you’ll
see if this model can do better.
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Exercise 2.3. Explore the SIR model.

Fiddle with the parameters to see if you can’t find a model for which the
data are a more plausible realization.

Worked solution to the Exercise
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Exercise 2.4. The SEIR model

Below is a diagram of the so-called SEIR model. This differs from the SIR
model in that infected individuals must pass a period of latency before
becoming infectious.

Modify the codes above to construct a pomp object containing the Consett
measles data and an SEIR model. Perform simulations as above and
adjust parameters to get a sense of whether improvement is possible by
including a latent period.

Worked solution to the Exercise
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License, acknowledgments, and links

This lesson is prepared for the Simulation-based Inference for
Epidemiological Dynamics module at the 2020 Summer Institute in
Statistics and Modeling in Infectious Diseases, SISMID 2020.

The materials build on previous versions of this course and related
courses.

Licensed under the Creative Commons Attribution-NonCommercial
license. Please share and remix non-commercially, mentioning its

origin.

Produced with R version 4.1.1 and pomp version 4.0.11.0.

Compiled on December 4, 2021.

Back to course homepage
R codes for this lesson
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