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Introduction

Objectives

Students completing this lesson will:

1 Gain an understanding of the nature of the problem of likelihood
computation for POMP models.

2 Be able to explain the simplest particle filter algorithm.

3 Gain experience in the visualization and exploration of likelihood
surfaces.

4 Be able to explain the tools of likelihood-based statistical inference
that become available given numerical accessibility of the likelihood
function.

3 / 75



Introduction

Overview

The following schematic diagram represents conceptual links between
different components of the methodological approach we’re developing for
statistical inference on epidemiological dynamics.
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Introduction

Overview II

In this lesson, we’re going to discuss the orange compartments.

The Monte Carlo technique called the “particle filter” is central for
connecting the higher-level ideas of POMP models and
likelihood-based inference to the lower-level tasks involved in carrying
out data analysis.

We employ a standard toolkit for likelihood based inference:
Maximum likelihood estimation, profile likelihood confidence intervals,
likelihood ratio tests for model selection, and other likelihood-based
model comparison tools such as AIC.

We seek to better understand these tools, and to figure out how to
implement and interpret them in the specific context of POMP
models.
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The likelihood function
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The likelihood function General considerations

The likelihood function

The basis for modern frequentist, Bayesian, and information-theoretic
inference.

Method of maximum likelihood introduced by Fisher (1922).

The likelihood function itself is a representation of the what the data
have to say about the parameters.

A good general reference on likelihood is by Pawitan (2001).
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The likelihood function General considerations

Definition of the likelihood function

Data are a sequence of N observations, denoted y∗1:N .

A statistical model is a density function fY1:N (y1:N ; θ) which defines a
probability distribution for each value of a parameter vector θ.

To perform statistical inference, we must decide, among other things,
for which (if any) values of θ it is reasonable to model y∗1:N as a
random draw from fY1:N (y1:N ; θ).

The likelihood function is

L(θ) = fY1:N (y
∗
1:N ; θ),

the density function evaluated at the data.

It is often convenient to work with the log likelihood function,

ℓ(θ) = logL(θ) = log fY1:N (y
∗
1:N ; θ).
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The likelihood function General considerations

Modeling using discrete and continuous distributions

Recall that the probability distribution fY1:N (y1:N ; θ) defines a
random variable Y1:N for which probabilities can be computed as
integrals of fY1:N (y1:N ; θ).

Specifically, for any event E describing a set of possible outcomes of
Y1:N ,

P [Y1:N ∈ E] =

∫
E
fY1:N (y1:N ; θ) dy1:N .

If the model corresponds to a discrete distribution, then the integral is
replaced by a sum and the probability density function is called a
probability mass function.

The definition of the likelihood function remains unchanged. We will
use the notation of continuous random variables, but all the methods
apply also to discrete models.
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The likelihood function General considerations

A simulator is implicitly a statistical model

For simple statistical models, we may describe the model by explicitly
writing the density function fY1:N (y1:N ; θ). One may then ask how to
simulate a random variable Y1:N ∼ fY1:N (y1:N ; θ).

For many dynamic models it is much more convenient to define the
model via a procedure to simulate the random variable Y1:N . This
implicitly defines the corresponding density fY1:N (y1:N ; θ).

For a complicated simulation procedure, it may be difficult or
impossible to write down or even compute fY1:N (y1:N ; θ) exactly.

It is important to bear in mind that the likelihood function exists even
when we don’t know what it is! We can still talk about the likelihood
function, and develop numerical methods that take advantage of its
statistical properties.
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The likelihood function Likelihood of a POMP model

The likelihood for a POMP model

Recall the following schematic diagram, showing dependence among
variables in a POMP model.

Measurements, Yn, at time tn depend on the latent process, Xn, at
that time.

The Markov property asserts that latent process variables depend on
their value at the previous timestep.

To be more precise, the distribution of the state Xn+1, conditional on
Xn, is independent of the values of Xk, k < n and Yk, k ≤ n.

Moreover, the distribution of the measurement Yn, conditional on
Xn, is independent of all other variables.
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The likelihood function Likelihood of a POMP model

The likelihood for a POMP model II
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The likelihood function Likelihood of a POMP model

The likelihood for a POMP model III

The latent process X(t) may be defined at all times, but we are
particularly interested in its value at observation times. Therefore, we
write

Xn = X(tn).

We write collections of random variables using the notation
X0:N = (X0, . . . , XN ).

The one-step transition density, fXn|Xn−1
(xn|xn−1; θ), together with

the measurement density, fYn|Xn
(yn|xn; θ) and the initial density,

fX0(x0; θ), specify the entire joint density via

fX0:N ,Y1:N (x0:N , y1:N ; θ)

= fX0(x0; θ)

N∏
n=1

fXn|Xn−1
(xn|xn−1; θ) fYn|Xn

(yn|xn; θ).
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The likelihood function Likelihood of a POMP model

The likelihood for a POMP model IV

The marginal density for sequence of measurements, Y1:N , evaluated
at the data, y∗1:N , is

L(θ) = fY1:N (y
∗
1:N ; θ) =

∫
fX0:N ,Y1:N (x0:N , y

∗
1:N ; θ) dx0:N .
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The likelihood function Likelihood of a POMP model

Special case: deterministic latent process

When the latent process is non-random, the log likelihood for a
POMP model closely resembles a nonlinear regression model.

In this case, we can write Xn = xn(θ), and the log likelihood is

ℓ(θ) =

N∑
n=1

log fYn|Xn

(
y∗n|xn(θ); θ

)
.

If we have a Gaussian measurement model, where Yn given
Xn = xn(θ) is conditionally normal with mean ŷn

(
xn(θ)

)
and

constant variance σ2, then the log likelihood contains a sum of
squares which is exactly the criterion that nonlinear least squares
regression seeks to minimize.

More details on deterministic latent process models are given as a
supplement.
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The likelihood function Likelihood of a POMP model

General case: stochastic unobserved state process

For a POMP model, the likelihood takes the form of an integral:

L(θ) = fY1:N (y
∗
1:N ; θ)

=

∫
fX0(x0; θ)

N∏
n=1

fYn|Xn
(y∗n|xn; θ) fXn|Xn−1

(xn|xn−1; θ) dx0:N .

(1)

This integral is high dimensional and, except for the simplest cases,
can not be reduced analytically.
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Computing the likelihood Monte Carlo algorithms

Monte Carlo likelihood by direct simulation

We work toward introducing the particle filter by first proposing a
simpler method that usually doesn’t work on anything but very short
time series.

Although this section is a demonstration of what not to do, it
serves as an introduction to the general approach of Monte Carlo
integration.

First, let’s rewrite the likelihood integral using an equivalent
factorization. As an exercise, you could check how the equivalence of
Eqns. 1 and 2 follows algebraically from the Markov property and the
definition of conditional density.
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Computing the likelihood Monte Carlo algorithms

Monte Carlo likelihood by direct simulation II

L(θ) = fY1:N (y
∗
1:N ; θ)

=

∫ {
N∏
n=1

fYn|Xn
(y∗n|xn; θ)

}
fX0:N

(x0:N ; θ) dx0:N .
(2)

Notice, using the representation in Eqn. 2, that the likelihood can be
written as an expectation,

L(θ) = E

[
N∏
n=1

fYn|Xn
(y∗n|Xn; θ)

]
,

where the expectation is taken with X0:N ∼ fX0:N
(x0:N ; θ).
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Computing the likelihood Monte Carlo algorithms

Monte Carlo likelihood by direct simulation III

Now, using a law of large numbers, we can approximate an
expectation by the average of a Monte Carlo sample. Thus,

L(θ) ≈ 1

J

J∑
j=1

N∏
n=1

fYn|Xn
(y∗n|Xj

n; θ),

where {Xj
0:N , j = 1, . . . , J} is a Monte Carlo sample of size J drawn

from fX0:N
(x0:N ; θ).

We see that, if we generate trajectories by simulation, all we have to
do to get a Monte Carlo estimate of the likelihood is evaluate the
measurement density of the data at each trajectory and average.

We get the plug-and-play property that our algorithm depends on
rprocess but does not require dprocess.
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Computing the likelihood Monte Carlo algorithms

Monte Carlo likelihood by direct simulation IV

However, this naive approach scales poorly with dimension. It requires
a Monte Carlo effort that scales exponentially with the length of the
time series, and so is infeasible on anything but a short data set.

One way to see this is to notice that, once a simulated trajectory
diverges from the data, it will seldom come back. Simulations that
lose track of the data will make a negligible contribution to the
likelihood estimate. When simulating a long time series, almost all
the simulated trajectories will eventually lose track of the data.

We can see this happening in practice for the measles outbreak data:
supplementary material.
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Computing the likelihood Sequential Monte Carlo

Sequential Monte Carlo: The particle filter

Fortunately, we can compute the likelihood for a POMP model by a
much more efficient algorithm than direct Monte Carlo integration.

We proceed by factorizing the likelihood in a different way:

L(θ) = fY1:N (y
∗
1:N ; θ) =

N∏
n=1

fYn|Y1:n−1
(y∗n|y∗1:n−1; θ)

=

N∏
n=1

∫
fYn|Xn

(y∗n|xn; θ) fXn|Y1:n−1
(xn|y∗1:n−1; θ) dxn,

with the understanding that fX1|Y1:0 = fX1 .
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Computing the likelihood Sequential Monte Carlo

Sequential Monte Carlo: The particle filter II

The Markov property leads to the prediction formula:

fXn|Y1:n−1
(xn|y∗1:n−1; θ)

=

∫
fXn|Xn−1

(xn|xn−1; θ) fXn−1|Y1:n−1
(xn−1|y∗1:n−1; θ) dxn−1.

Bayes’ theorem gives the filtering formula:

fXn|Y1:n(xn|y
∗
1:n; θ)

= fXn|Yn,Y1:n−1
(xn|y∗n, y∗1:n−1; θ)

=
fYn|Xn

(y∗n|xn; θ) fXn|Y1:n−1
(xn|y∗1:n−1; θ)∫

fYn|Xn
(y∗n|un; θ) fXn|Y1:n−1

(un|y∗1:n−1; θ) dun
.
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Computing the likelihood Sequential Monte Carlo

Sequential Monte Carlo: The particle filter III

This suggests that we keep track of two key distributions at each time
tn,

The prediction distribution is fXn|Y1:n−1
(xn|y∗1:n−1).

The filtering distribution is fXn|Y1:n(xn|y∗1:n).
The prediction and filtering formulas give us a two-step recursion:

The prediction formula gives the prediction distribution at time tn
using the filtering distribution at time tn−1.
The filtering formula gives the filtering distribution at time tn using the
prediction distribution at time tn.

The particle filter use Monte Carlo techniques to sequentially
estimate the integrals in the prediction and filtering recursions.
Hence, the alternative name of sequential Monte Carlo (SMC).
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Computing the likelihood Sequential Monte Carlo

Sequential Monte Carlo: The particle filter IV

A basic particle filter is described as follows:

(1) Suppose XF
n−1,j , j = 1, . . . , J is a set of J points drawn from the

filtering distribution at time tn−1.

(2) We obtain a sample XP
n,j of points drawn from the prediction

distribution at time tn by simply simulating the process model:

XP
n,j ∼ process(XF

n−1,j , θ), j = 1, . . . , J.

(3) Having obtained xPn,j , we obtain a sample of points from the filtering

distribution at time tn by resampling from
{
XP
n,j , j ∈ 1 : J

}
with

weights
wn,j = fYn|Xn

(y∗n|XP
n,j ; θ).
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Computing the likelihood Sequential Monte Carlo

Sequential Monte Carlo: The particle filter V

(4) The Monte Carlo principle tells us that the conditional likelihood

Ln(θ) = fYn|Y1:n−1
(y∗n|y∗1:n−1; θ)

=

∫
fYn|Xn

(y∗n|xn; θ) fXn|Y1:n−1
(xn|y∗1:n−1; θ) dxn

is approximated by

L̂n(θ) ≈
1

J

∑
j

fYn|Xn
(y∗n|XP

n,j ; θ)

since XP
n,j is approximately a draw from fXn|Y1:n−1

(xn|y∗1:n−1; θ).

(5) We can iterate this procedure through the data, one step at a time,
alternately simulating and resampling, until we reach n = N .
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Computing the likelihood Sequential Monte Carlo

Sequential Monte Carlo: The particle filter VI

(6) The full log likelihood then has approximation

ℓ(θ) = logL(θ) =
∑
n

logLn(θ) ≈
∑
n

log L̂n(θ).
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Computing the likelihood Sequential Monte Carlo

Sequential Monte Carlo: The particle filter VII

Key references on the particle filter include Kitagawa (1987),
Arulampalam et al. (2002), and the book by Doucet et al. (2001).
Pseudocode for the above is provided by King et al. (2016).

It can be shown that the particle filter provides an unbiased estimate
of the likelihood. This implies a consistent but biased estimate of the
log likelihood.
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Computing the likelihood Sequential Monte Carlo

Parallel computing

It will be helpful to parallelize most of the computations. Most machines
nowadays have multiple cores and using this computational capacity is as
simple as:

(i) letting R know you plan to use multiple processors;

(ii) using the parallel for loop provided by the foreach package; and

(iii) paying proper attention to the use of parallel random number
generators (RNG).
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Computing the likelihood Sequential Monte Carlo

Parallel computing II

For example:

library(foreach)

library(doParallel)

registerDoParallel()

The first two lines above load the foreach and doParallel packages, the
latter being a “backend” for the foreach package. The next line tells
foreach that we will use the doParallel backend. By default, R will guess
how many cores are available and will run about half this number of
concurrent R processes.
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Computing the likelihood Sequential Monte Carlo

Parallel random number generators (RNG)

To initialize a parallel RNG, we use the doRNG package. The following
ensures that the parallel computations will be both mutually independent
and reproducible.

library(doRNG)

registerDoRNG(625904618)
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Computing the likelihood Sequential Monte Carlo

Particle filtering in pomp

Here, we’ll get some practical experience with the particle filter, and the
likelihood function, in the context of our measles-outbreak case study.
Here, we repeat the construction of the SIR model we looked at earlier,
using parameters obtained by looking at simulations. R code to build the
model is available for download. We can execute this code by sourcing the
relevant file:

source("https://kingaa.github.io/sbied/pfilter/model.R")

In pomp, the basic particle filter is implemented in the command
pfilter. We must choose the number of particles to use by setting the
Np argument.
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Computing the likelihood Sequential Monte Carlo

Particle filtering in pomp II

measSIR %>%

pfilter(Np=5000) -> pf

logLik(pf)

[1] -131.0779

We can run a few particle filters to get an estimate of the Monte Carlo
variability:
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Computing the likelihood Sequential Monte Carlo

Particle filtering in pomp III

foreach (i=1:10, .combine=c) %dopar% {
measSIR %>% pfilter(Np=5000)

} -> pf

logLik(pf) -> ll

logmeanexp(ll,se=TRUE)

se

-131.934662 0.684017
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Likelihood-based inference Parameter estimates and uncertainty quantification

Review of likelihood-based inference

For now, let us suppose that software exists to evaluate and maximize the
likelihood function, up to a tolerable numerical error, for the dynamic
models of interest. Our immediate task is to think about how to use that
capability.

Likelihood-based inference (meaning statistical tools based on the
likelihood function) provides tools for parameter estimation, standard
errors, hypothesis tests and diagnosing model misspecification.

Likelihood-based inference often (but not always) has favorable
theoretical properties. Here, we are not especially concerned with the
underlying theory of likelihood-based inference. On any practical
problem, we can check the properties of a statistical procedure by
simulation experiments.
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Likelihood-based inference Parameter estimates and uncertainty quantification

The maximum likelihood estimate (MLE)

A maximum likelihood estimate (MLE) is

θ̂ = argmax
θ

ℓ(θ),

where argmaxθ g(θ) means a value of argument θ at which the
maximum of the function g is attained, so
g (argmaxθ g(θ)) = maxθ g(θ).

If there are many values of θ giving the same maximum value of the
likelihood, then an MLE still exists but is not unique.

Note that argmaxθ L(θ) and argmaxθ ℓ(θ) are the same. Why?
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Likelihood-based inference Parameter estimates and uncertainty quantification

Standard errors for the MLE

Parameter estimates are not very useful without some measure of
their uncertainty.

Usually, this means obtaining a confidence interval, or in practice an
interval close to a true confidence interval which should formally be
called an approximate confidence interval. In practice, the word
“approximate” is often dropped!
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Likelihood-based inference Parameter estimates and uncertainty quantification

Standard errors for the MLE II

There are three main approaches to estimating the statistical uncertainty
in an MLE.

(1) The Fisher information.

(2) Profile likelihood estimation.

(3) A simulation study, also known as a bootstrap.
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Likelihood-based inference Parameter estimates and uncertainty quantification

Fisher information

A computationally quick approach when one has access to
satisfactory numerical second derivatives of the log likelihood.

The approximation is satisfactory only when θ̂ is well approximated by
a normal distribution.

Neither of the two requirements above are typically met for POMP
models.

A review of standard errors via Fisher information is provided as a
supplement.
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Likelihood-based inference Parameter estimates and uncertainty quantification

Profile likelihood estimation

This approach is generally preferable to the Fisher information for POMP
models.
We will explain this method below and put it into practice in the next
lesson.

41 / 75

https://kingaa.github.io/sbied/mif/
https://kingaa.github.io/sbied/mif/


Likelihood-based inference Parameter estimates and uncertainty quantification

The bootstrap

If done carefully and well, this can be the best approach.

A confidence interval is a claim about reproducibility. You claim, so
far as your model is correct, that on 95% of realizations from the
model, a 95% confidence interval you have constructed will cover the
true value of the parameter.

A simulation study can check this claim fairly directly, but requires
the most effort.

The simulation study takes time for you to develop and debug, time
for you to explain, and time for the reader to understand and check
what you have done. We usually carry out simulation studies to check
our main conclusions only.

Further discussion of bootstrap methods for POMP models is
provided as a supplement.
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Likelihood-based inference Parameter estimates and uncertainty quantification

Confidence intervals via the profile likelihood

Let’s consider the problem of obtaining a confidence interval for the
first component of θ. We’ll write

θ = (ϕ, ψ).

The profile log likelihood function of ϕ is defined to be

ℓprofile(ϕ) = max
ψ

ℓ(ϕ, ψ).

In general, the profile likelihood of one parameter is constructed by
maximizing the likelihood function over all other parameters.

Note that, maxϕ ℓ
profile(ϕ) = maxθ ℓ(θ) and that maximizing the

profile likelihood ℓprofile(ϕ) gives the MLE, θ̂. Why?
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Likelihood-based inference Parameter estimates and uncertainty quantification

Confidence intervals via the profile likelihood II

An approximate 95% confidence interval for ϕ is given by{
ϕ : ℓ(θ̂)− ℓprofile(ϕ) < 1.92

}
.

This is known as a profile likelihood confidence interval. The cutoff
1.92 is derived using Wilks’ theorem, which we will discuss in more
detail when we develop likelihood ratio tests.

Although the asymptotic justification of Wilks’ theorem is the same
limit that justifies the Fisher information standard errors, profile
likelihood confidence intervals tend to work better than Fisher
information confidence intervals when N is not so large—particularly
when the log likelihood function is not close to quadratic near its
maximum.
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Geometry of the likelihood function

The likelihood surface

It is extremely useful to visualize the geometric surface defined by the
likelihood function.

If Θ is two-dimensional, then the surface ℓ(θ) has features like a
landscape.

Local maxima of ℓ(θ) are peaks.

Local minima are valleys.

Peaks may be separated by a valley or may be joined by a ridge. If
you go along the ridge, you may be able to go from one peak to the
other without losing much elevation. Narrow ridges can be easy to
fall off, and hard to get back on to.

In higher dimensions, one can still think of peaks and valleys and
ridges. However, as the dimension increases it quickly becomes hard
to imagine the surface.
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Geometry of the likelihood function

Exploring the likelihood surface: slices

To get an idea of what the likelihood surface looks like in the
neighborhood of a point in parameter space, we can construct some
likelihood slices.

A likelihood slice is a cross-section through the likelihood surface.

We’ll make slices for our Consett measles POMP model, in the β and
µIR directions.

Both slices will pass through our current candidate parameter vector,
stored in the pomp model object.

47 / 75



Geometry of the likelihood function

Exercise 3.1. Slices and profiles

What is the difference between a likelihood slice and a profile? What is the
consequence of this difference for the statistical interpretation of these
plots? How should you decide whether to compute a profile or a slice?

Worked solution to the Exercise
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Geometry of the likelihood function

Slicing the measles SIR likelihood

slice_design(

center=coef(measSIR),

Beta=rep(seq(from=5,to=30,length=40),each=3),

mu_IR=rep(seq(from=0.2,to=2,length=40),each=3)

) -> p

library(doParallel)

library(doRNG)

registerDoParallel()

registerDoRNG(108028909)
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Geometry of the likelihood function

Slicing the measles SIR likelihood II

foreach (theta=iter(p,"row"), .combine=rbind,

.inorder=FALSE) %dopar%

{
library(pomp)

measSIR %>% pfilter(params=theta,Np=5000) -> pf

theta$loglik <- logLik(pf)

theta

} -> p
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Geometry of the likelihood function

Slicing the measles SIR likelihood III
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Geometry of the likelihood function

Slicing the measles SIR likelihood IV

Slices offer a very limited perspective on the geometry of the
likelihood surface.

When there are only one or two unknown parameters, we can evaluate
the likelihood at a grid of points and visualize the surface directly.
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Geometry of the likelihood function

Two-dimensional likelihood slice

expand.grid(

Beta=rep(seq(from=10,to=30,length=40),each=3),

mu_IR=rep(seq(from=0.4,to=1.5,length=40),each=3),

rho=0.5,k=10,eta=0.06,N=38000

) -> p

library(doParallel)

library(doRNG)

registerDoParallel()

registerDoRNG(421776444)
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Geometry of the likelihood function

Two-dimensional likelihood slice II

foreach (theta=iter(p,"row"), .combine=rbind,

.inorder=FALSE) %dopar%

{
library(pomp)

measSIR %>% pfilter(params=theta,Np=5000) -> pf

theta$loglik <- logLik(pf)

theta

} -> p
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Geometry of the likelihood function

Two-dimensional likelihood slice III
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Geometry of the likelihood function

Two-dimensional likelihood slice IV

In the above, all points with log likelihoods less than 25 units below the
maximum are shown in grey.

Notice some features of the log likelihood surface, and its estimate
from the particle filter, that can cause difficulties for numerical
methods:

(a) The surface is wedge-shaped, so its curvature varies considerably. By
contrast, asymptotic theory predicts a parabolic surface that has
constant curvature.

(b) Monte Carlo noise in the likelihood evaluation makes it hard to pick out
exactly where the likelihood is maximized. Nevertheless, the major
features of the likelihood surface are evident despite the noise.

Wedge-shaped relationships between parameters, and nonlinear
relationships, are common features of epidemiological dynamic
models. We’ll see this in the case studies.
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Exercises

Outline

1 Introduction

2 The likelihood function
Likelihood of a POMP model

3 Computing the likelihood
Sequential Monte Carlo

4 Likelihood-based inference
Parameter estimates and uncertainty quantification

5 Geometry of the likelihood function
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7 More on likelihood-based inference
Maximizing the likelihood
Likelihood ratio test
Information criteria
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Exercises

Exercise 3.2. Cost of a particle-filter calculation

How much computer processing time does a particle filter take?

How does this scale with the number of particles?

Form a conjecture based upon your understanding of the algorithm. Test
your conjecture by running a sequence of particle filter operations, with
increasing numbers of particles (Np), measuring the time taken for each
one using system.time. Plot and interpret your results.
Worked solution to the Exercise
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Exercises

Exercise 3.3. Log likelihood estimation

Here are some desiderata for a Monte Carlo log likelihood approximation:

It should have low Monte Carlo bias and variance.

It should be presented together with estimates of the bias and
variance so that we know the extent of Monte Carlo uncertainty in
our results.

It should be computed in a length of time appropriate for the
circumstances.

Set up a likelihood evaluation for the measles model, choosing the
numbers of particles and replications so that your evaluation takes
approximately one minute on your machine.

Provide a Monte Carlo standard error for your estimate.

Comment on the bias of your estimate.

Use doParallel to take advantage of multiple cores on your computer
to improve your estimate.

Worked solution to the Exercise
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Exercises

Exercise 3.4. One-dimensional likelihood slice

Compute several likelihood slices in the η direction.
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Exercises

Exercise 3.5. Two-dimensional likelihood slice

Compute a slice of the likelihood in the β-η plane.
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More on likelihood-based inference

Outline

1 Introduction

2 The likelihood function
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Information criteria
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More on likelihood-based inference Maximizing the likelihood

Maximizing the particle filter likelihood

Likelihood maximization is key to profile intervals, likelihood ratio
tests and AIC as well as the computation of the MLE.

An initial approach to likelihood maximization might be to stick the
particle filter log likelihood estimate into a standard numerical
optimizer, such as the Nelder-Mead algorithm.

In practice this approach is unsatisfactory on all but the smallest
POMP models. Standard numerical optimizers are not designed to
maximize noisy and computationally expensive Monte Carlo functions.

Further investigation into this approach is available as a supplement.

We’ll present an iterated filtering algorithm for maximizing the
likelihood in a way that takes advantage of the structure of POMP
models and the particle filter.

First, let’s think a bit about some practical considerations in
interpreting the MLE for a POMP.
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More on likelihood-based inference Maximizing the likelihood

Likelihood-based model selection and model diagnostics

For nested hypotheses, we can carry out model selection by likelihood
ratio tests.

For non-nested hypotheses, likelihoods can be compared using
Akaike’s information criterion (AIC) or related methods.
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More on likelihood-based inference Likelihood ratio test

Likelihood ratio tests for nested hypotheses

The whole parameter space on which the model is defined is Θ ⊂ RD.
Suppose we have two nested hypotheses

H⟨0⟩ : θ ∈ Θ⟨0⟩,

H⟨1⟩ : θ ∈ Θ⟨1⟩,

defined via two nested parameter subspaces, Θ⟨0⟩ ⊂ Θ⟨1⟩, with
respective dimensions D⟨0⟩ < D⟨1⟩ ≤ D.

We consider the log likelihood maximized over each of the hypotheses,

ℓ⟨0⟩ = sup
θ∈Θ⟨0⟩

ℓ(θ),

ℓ⟨1⟩ = sup
θ∈Θ⟨1⟩

ℓ(θ).

65 / 75



More on likelihood-based inference Likelihood ratio test

Likelihood ratio tests for nested hypotheses II

A useful approximation asserts that, under the hypothesis H⟨0⟩,

ℓ⟨1⟩ − ℓ⟨0⟩ ≈ 1
2 χ

2
D⟨1⟩−D⟨0⟩ ,

where χ2
d is a chi-squared random variable on d degrees of freedom

and ≈ means “is approximately distributed as”.

We will call this the Wilks approximation.

The Wilks approximation can be used to construct a hypothesis test
of the null hypothesis H⟨0⟩ against the alternative H⟨1⟩.

This is called a likelihood ratio test since a difference of log
likelihoods corresponds to a ratio of likelihoods.

When the data are IID, N → ∞, and the hypotheses satisfy suitable
regularity conditions, this approximation can be derived
mathematically and is known as Wilks’ theorem.
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More on likelihood-based inference Likelihood ratio test

Likelihood ratio tests for nested hypotheses III

The chi-squared approximation to the likelihood ratio statistic may be
useful, and can be assessed empirically by a simulation study, even in
situations that do not formally satisfy any known theorem.
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More on likelihood-based inference Likelihood ratio test

Wilks’ theorem and profile likelihood

Suppose we have an MLE, written θ̂ = (ϕ̂, ψ̂), and a profile log
likelihood for ϕ, given by ℓprofile(ϕ).

Consider the likelihood ratio test for the nested hypotheses

H⟨0⟩ : ϕ = ϕ0,

H⟨1⟩ : ϕ unconstrained.

We can compute the 95%-ile for a chi-squared distribution with one
degree of freedom: qchisq(0.95,df=1)= 3.841.

Wilks’ theorem then gives us a hypothesis test with approximate size
5% that rejects H⟨0⟩ if ℓprofile(ϕ̂)− ℓprofile(ϕ0) < 3.84/2.
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More on likelihood-based inference Likelihood ratio test

Wilks’ theorem and profile likelihood II

It follows that, with probability 95%, the true value of ϕ falls in the
set {

ϕ : ℓprofile(ϕ̂)− ℓprofile(ϕ) < 1.92
}
.

So, we have constructed a profile likelihood confidence interval,
consisting of the set of points on the profile likelihood within 1.92 log
units of the maximum.

This is an example of a general duality between confidence intervals
and hypothesis tests.
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More on likelihood-based inference Information criteria

Akaike’s information criterion (AIC)

Likelihood ratio tests provide an approach to model selection for
nested hypotheses, but what do we do when models are not nested?

A more general approach is to compare likelihoods of different models
by penalizing the likelihood of each model by a measure of its
complexity.

Akaike’s information criterion AIC is given by

AIC = −2 ℓ(θ̂) + 2D

“Minus twice the maximized log likelihood plus twice the number of
parameters.”

We are invited to select the model with the lowest AIC score.
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More on likelihood-based inference Information criteria

Akaike’s information criterion (AIC) II

AIC was derived as an approach to minimizing prediction error.
Increasing the number of parameters leads to additional overfitting
which can decrease predictive skill of the fitted model.

Viewed as a hypothesis test, AIC may have weak statistical properties.
It can be a mistake to interpret AIC by making a claim that the
favored model has been shown to provide a superior explanation of
the data. However, viewed as a way to select a model with reasonable
predictive skill from a range of possibilities, it is often useful.

AIC does not penalize model complexity beyond the consequence of
reduced predictive skill due to overfitting. One can penalize
complexity by incorporating a more severe penalty than the 2D term
above, such as via BIC.
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More on likelihood-based inference Information criteria

Akaike’s information criterion (AIC) III

A practical approach is to use AIC, while taking care to view it as a
procedure to select a reasonable predictive model and not as a formal
hypothesis test.
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More on likelihood-based inference Information criteria
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