
Lesson 4.
Iterated filtering: principles and practice

Aaron A. King, Edward L. Ionides and Qianying Lin

1 / 106

Outline

1 Introduction

2 Classification of statistical methods for POMP models

3 Iterated filtering in theory

4 Iterated filtering in practice

5 Searching for the MLE

6 The investigation continues. . . .

7 Exercises

2 / 106

Introduction

Introduction

This tutorial covers likelihood estimation via the method of iterated
filtering.

It presupposes familiarity with building partially observed Markov
process (POMP) objects in the R package pomp (King et al., 2016).

This tutorial follows on from the topic of particle filtering (also known
as sequential Monte Carlo) via pfilter in pomp.

3 / 106

Introduction

Objectives

1 To review the available options for inference on POMP models, to put
iterated filtering in context.

2 To understand how iterated filtering algorithms carry out repeated
particle filtering operations, with randomly perturbed parameter
values, in order to maximize the likelihood.

3 To gain experience carrying out statistical investigations using
iterated filtering in a relatively simple situation: fitting an SIR model
to data from a measles outbreak.

4 / 106

Classification of statistical methods for POMP models

Outline

1 Introduction

2 Classification of statistical methods for POMP models

3 Iterated filtering in theory

4 Iterated filtering in practice

5 Searching for the MLE

6 The investigation continues. . . .

7 Exercises

5 / 106

Classification of statistical methods for POMP models

Classification of statistical methods for POMP models

Many, many statistical methods have been proposed for inference on
POMP models (He et al., 2010; King et al., 2016).

The volume of research indicates both the importance and the
difficulty of the problem.

Let’s start by considering three criteria to categorize inference
methods:

the plug-and-play property
full-information or feature-based
frequentist or Bayesian

6 / 106

Classification of statistical methods for POMP models The plug-and-play property

Plug-and-play (also called simulation-based) methods

Inference methodology that calls rprocess but not dprocess is said
to be plug-and-play. All popular modern Monte Carlo methods fall
into this category.

“Simulation-based” is equivalent to “plug-and-play”.

Historically, simulation-based meant simulating forward from initial
conditions to the end of the time series.

However, particle filtering methods instead consider each observation
interval sequentially. They carry out multiple, carefully selected,
simulations over each interval.

7 / 106

randall-stat-ionides

randall-stat-ionides

Classification of statistical methods for POMP models The plug-and-play property

Plug-and-play (also called simulation-based) methods II

Plug-and-play methods can call dmeasure. A method that uses only
rprocess and rmeasure is called “doubly plug-and-play”.

Two non-plug-and-play methods—expectation-maximization (EM)
and Markov chain Monte Carlo (MCMC)—have theoretical
convergence problems for nonlinear POMP models. The failures of
these two workhorses of statistical computation have prompted
development of alternative methodologies.

8 / 106

Classification of statistical methods for POMP models Full information vs. feature-based methods

Full-information and feature-based methods

Full-information methods are defined to be those based on the
likelihood function for the full data (i.e., likelihood-based frequentist
inference and Bayesian inference).

Feature-based methods either consider a summary statistic (a
function of the data) or work with an an alternative to the likelihood.

Asymptotically, full-information methods are statistically efficient and
feature-based methods are not.

In some cases, loss of statistical efficiency might be an acceptable
tradeoff for advantages in computational efficiency.

9 / 106

Classification of statistical methods for POMP models Full information vs. feature-based methods

Full-information and feature-based methods II

However:

Good low-dimensional summary statistics can be hard to find.
When using statistically inefficient methods, it can be hard to know
how much information you are losing.
Intuition and scientific reasoning can be inadequate tools to derive
informative low-dimensional summary statistics (Shrestha et al., 2011;
Ionides, 2011).

10 / 106

Classification of statistical methods for POMP models Bayesian vs. frequentist approaches

Bayesian and frequentist methods

Recently, plug-and-play Bayesian methods have been discovered:

particle Markov chain Monte Carlo (PMCMC) (Andrieu et al., 2010).
approximate Bayesian computation (ABC) (Toni et al., 2009).

Prior belief specification is both the strength and weakness of
Bayesian methodology:

The likelihood surface for nonlinear POMP models often contains
nonlinear ridges and variations in curvature.

11 / 106

Classification of statistical methods for POMP models Bayesian vs. frequentist approaches

Bayesian and frequentist methods II

These situations bring into question the appropriateness of
independent priors derived from expert opinion on marginal
distributions of parameters.

They also are problematic for specification of “flat” or
“uninformative” prior beliefs.

Expert opinion can be treated as data for non-Bayesian analysis.
However, our primary task is to identify the information in the data
under investigation, so it can be helpful to use methods that do not
force us to make our conclusions dependent on quantification of prior
beliefs.

12 / 106

Classification of statistical methods for POMP models Summary

POMP inference methodologies

Frequentist Bayesian

Plug-and-play

Full-information iterated filtering particle MCMC

Feature-based simulated moments ABC
synthetic likelihood (SL) SL-based MCMC
nonlinear forecasting

Not plug-and-play

Full-information EM algorithm MCMC
Kalman filter

Feature-based Yule-Walker1 extended Kalman filter2

extended Kalman filter2

1Yule-Walker is a method of moments for ARMA, a linear Gaussian POMP.
2The Kalman filter gives the exact likelihood for a linear Gaussian POMP. The

extended Kalman filter gives an approximation for nonlinear models that can be used for
quasi-likelihood or quasi-Bayesian inference.

13 / 106

randall-stat-ionides

Iterated filtering in theory

Outline

1 Introduction

2 Classification of statistical methods for POMP models

3 Iterated filtering in theory

4 Iterated filtering in practice

5 Searching for the MLE

6 The investigation continues. . . .

7 Exercises

14 / 106

Iterated filtering in theory

Full-information, plug-and-play, frequentist methods

Iterated filtering methods (Ionides et al., 2006, 2015) are the only
currently available, full-information, plug-and-play, frequentist
methods for POMP models.

Iterated filtering methods have been shown to solve likelihood-based
inference problems for epidemiological situations which are
computationally intractable for available Bayesian methodology
(Ionides et al., 2015).

15 / 106

Iterated filtering in theory

An iterated filtering algorithm (IF2)

We focus on the IF2 algorithm of Ionides et al. (2015). In this algorithm:

Each iteration consists of a particle filter, carried out with the
parameter vector, for each particle, doing a random walk.

At the end of the time series, the collection of parameter vectors is
recycled as starting parameters for the next iteration.

The random-walk variance decreases at each iteration.

In theory, this procedure converges toward the region of parameter space
maximizing the maximum likelihood. In practice, we can test this claim on
examples.

16 / 106

Iterated filtering in theory

IF2 algorithm pseudocode

Input:

simulators for fX0(x0; θ) and fXn|Xn−1
(xn|xn−1; θ);

evaluator for fYn|Xn
(yn|xn; θ);

data, y∗1:N
Algorithmic parameters:

number of iterations, M ;

number of particles, J ;

initial parameter swarm, {Θ0
j , j = 1, . . . , J};

perturbation density, hn(θ|φ;σ);
perturbation scale, σ1:M

Output:

final parameter swarm, {ΘM
j , j = 1, . . . , J}

17 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Iterated filtering in theory

IF2 algorithm pseudocode II

Procedure:
1 For m in 1:M
2 ΘF,m

0,j ∼ h0(θ|Θm−1
j ;σm) for j in 1:J

3 XF,m
0,j ∼ fX0(x0; Θ

F,m
0,j) for j in 1:J

4 For n in 1:N
5 ΘP,m

n,j ∼ hn(θ|ΘF,m
n−1,j , σm) for j in 1:J

6 XP,m
n,j ∼ fXn|Xn−1

(xn|XF,m
n−1,j ; Θ

P,m
n,j) for j in 1:J

7 wm
n,j = fYn|Xn

(y∗n|X
P,m
n,j ; ΘP,m

n,j) for j in 1:J

8 Draw k1:J with P [kj = i] = wm
n,i

/∑J
u=1w

m
n,u

9 ΘF,m
n,j = ΘP,m

n,kj
and XF,m

n,j = XP,m
n,kj

for j in 1:J

10 End For
11 Set Θm

j = ΘF,m
N,j for j in 1:J

12 End For
18 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Iterated filtering in theory

IF2 algorithm pseudocode III

Remarks:

The N loop (lines 4 through 10) is a basic particle filter applied to a
model with stochastic perturbations to the parameters.

The M loop repeats this particle filter with decreasing perturbations.

The superscript F in ΘF,m
n,j and XF,m

n,j denote solutions to the filtering
problem, with the particles j = 1, . . . , J providing a Monte Carlo
representation of the conditional distribution at time n given data
y∗1:n for filtering iteration m.

The superscript P in ΘP,m
n,j and XP,m

n,j denote solutions to the
prediction problem, with the particles j = 1, . . . , J providing a Monte
Carlo representation of the conditional distribution at time n given
data y∗1:n−1 for filtering iteration m.

The weight wm
n,j gives the likelihood of the data at time n for particle

j in filtering iteration m.

19 / 106

Iterated filtering in theory

Analogy with evolution by natural selection

The parameters characterize the genotype.

The swarm of particles is a population.

The likelihood, a measure of the compatibility between the
parameters and the data, is the analogue of fitness.

Each successive observation is a new generation.

Since particles reproduce in each generation in proportion to their
likelihood, the particle filter acts like natural selection.

The artificial perturbations augment the “genetic” variance and
therefore correspond to mutation.

IF2 increases the fitness of the population of particles.

However, because our scientific interest focuses on the model without
the artificial perturbations, we decrease the intensity of the latter with
successive iterations.

20 / 106

randall-stat-ionides

Iterated filtering in practice

Outline

1 Introduction

2 Classification of statistical methods for POMP models

3 Iterated filtering in theory

4 Iterated filtering in practice

5 Searching for the MLE

6 The investigation continues. . . .

7 Exercises

21 / 106

Iterated filtering in practice An example problem

Applying IF2 to the Consett measles outbreak

Let us apply IF2 to our analysis of the Consett measles outbreak we began
to examine in Lessons 2 and 3.
The following loads the data and the stochastic SIR model we constructed
there.

source("https://kingaa.github.io/sbied/pfilter/model.R")

In the earlier lessons, we demonstrated how to test the codes via
simulation.

22 / 106

Iterated filtering in practice An example problem

Testing the codes: filtering

Before engaging in iterated filtering, it is a good idea to check that the
basic particle filter is working since we can’t iterate something unless we
can run it once! The simulations above check the rprocess and
rmeasure codes; the particle filter depends on the rprocess and
dmeasure codes and so is a check of the latter.

measSIR %>%

pfilter(Np=1000) -> pf

plot(pf)

23 / 106

Iterated filtering in practice An example problem

Testing the codes: filtering II

The above plot shows the data (reports), along with the effective sample
size (ESS) of the particle filter (ess) and the log likelihood of each
observation conditional on the preceding ones (cond.logLik).
The ESS is the equivalent number of independent particles. In this case,
the ESS appears to be everywhere adequate.

24 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Iterated filtering in practice Setting up the estimation problem

Setting up the estimation problem

Let’s assume that the population size, N , is known accurately. We’ll fix
that parameter.
Let’s revisit the assumption that the infectious period is 2 weeks, imagining
that we have access to the results of household and clinical studies that
have concluded that infected patients shed the virus for 3–4 da. We’ll use
these results to constrain the infectious period in our model to 3.5 da, i.e.,
µIR = 2 wk−1. We also fix k = 10. Later, we can relax our assumptions.

fixed_params <- c(N=38000, mu_IR=2, k=10)

coef(measSIR,names(fixed_params)) <- fixed_params

We proceed to estimate β, η, and ρ.

25 / 106

randall-stat-ionides

randall-stat-ionides

Iterated filtering in practice Setting up the estimation problem

Parallel computing

It will be helpful to parallelize most of the computations. Lesson 3
discusses how to accomplish this using foreach.

library(foreach)

library(doParallel)

registerDoParallel()

library(doRNG)

registerDoRNG(625904618)

26 / 106

https://kingaa.github.io/sbied/pfilter/

Iterated filtering in practice Setting up the estimation problem

Running a particle filter

We proceed to carry out replicated particle filters at an initial guess of
β = 15, η = 0.06, and ρ = 0.5.

foreach(i=1:10,.combine=c) %dopar% {
library(pomp)

measSIR %>% pfilter(Np=5000)

} -> pf

pf %>% logLik() %>% logmeanexp(se=TRUE) -> L_pf

L_pf

se

-278.66905 16.39569

In 1.05 seconds, using 8 cores, we obtain an unbiased likelihood estimate
of -278.7 with a Monte Carlo standard error of 16.

27 / 106

Iterated filtering in practice Setting up the estimation problem

Building up a picture of the likelihood surface

Given a model and a set of data, the likelihood surface is well defined,
though it may be difficult to visualize.

We can develop a progressively more complete picture of this surface
by storing likelihood estimates whenever we compute them.

It is a very good idea to set up a database within which to store the
likelihood of every point for which we have an estimated likelihood.

This will become larger and more complete as our parameter-space
search goes on and will be a basis for a variety of explorations.

28 / 106

Iterated filtering in practice Setting up the estimation problem

Building up a picture of the likelihood surface II

At this point, we’ve computed the likelihood at a single point. Let’s store
this point, together with the estimated likelihood and our estimate of the
standard error on that likelihood, in a CSV file:

pf[[1]] %>% coef() %>% bind_rows() %>%

bind_cols(loglik=L_pf[1],loglik.se=L_pf[2]) %>%

write_csv("measles_params.csv")

29 / 106

Iterated filtering in practice A local search of the likelihood surface

A local search of the likelihood surface

Let’s carry out a local search using mif2 around this point in parameter
space.

We need to choose the rw.sd and cooling.fraction.50

algorithmic parameters.

Since β and µIR will be estimated on the log scale, and we expect
that multiplicative perturbations of these parameters will have roughly
similar effects on the likelihood, we’ll use a perturbation size of 0.02,
which we imagine will have a small but non-negligible effect.

For simplicity, we’ll use the same perturbation size on ρ.

We fix cooling.fraction.50=0.5, so that after 50 mif2 iterations,
the perturbations are reduced to half their original magnitudes.

30 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Iterated filtering in practice A local search of the likelihood surface

A local search of the likelihood surface II

foreach(i=1:20,.combine=c) %dopar% {
library(pomp)

library(tidyverse)

measSIR %>%

mif2(

Np=2000, Nmif=50,

cooling.fraction.50=0.5,

rw.sd=rw.sd(Beta=0.02, rho=0.02, eta=ivp(0.02)),

partrans=parameter_trans(log="Beta",logit=c("rho","eta")),

paramnames=c("Beta","rho","eta")

)

} -> mifs_local

31 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Iterated filtering in practice A local search of the likelihood surface

Windows issues

Some Windows users have reported trouble with the above code. This
appears to be due to certain Windows security features that make it
impossible to compile codes inside a parallel block. We have found a
workaround.
Have a look at this document to learn about the workaround.

32 / 106

./windows.html

Iterated filtering in practice A local search of the likelihood surface

Iterated filtering diagnostics

We obtain some diagnostic plots with the plot command applied to
mifs local. Here is a way to get a prettier version:

mifs_local %>%

traces() %>%

melt() %>%

ggplot(aes(x=iteration,y=value,group=L1,color=factor(L1)))+

geom_line()+

guides(color="none")+

facet_wrap(~variable,scales="free_y")

33 / 106

Iterated filtering in practice A local search of the likelihood surface

Iterated filtering diagnostics II

34 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Iterated filtering in practice A local search of the likelihood surface

Iterated filtering diagnostics III

We see that the likelihood increases as the iterations proceed, though
there is considerable variability due to

(a) the poorness of our starting guess and
(b) the stochastic nature of this Monte Carlo algorithm.

We see movement in the parameters, though variability remains.

35 / 106

Iterated filtering in practice A local search of the likelihood surface

Estimating the likelihood

Although the filtering carried out by mif2 in the final filtering iteration
generates an approximation to the likelihood at the resulting point
estimate, this is not good enough for reliable inference.

Partly, this is because parameter perturbations are applied in the last
filtering iteration, so that the likelihood reported by mif2 is not
identical to that of the model of interest.

Partly, this is because mif2 is usually carried out with fewer particles
than are needed for a good likelihood evaluation.

36 / 106

Iterated filtering in practice A local search of the likelihood surface

Estimating the likelihood II

Therefore, we evaluate the likelihood, together with a standard error, using
replicated particle filters at each point estimate.

foreach(mf=mifs_local,.combine=rbind) %dopar% {
library(pomp)

library(tidyverse)

evals <- replicate(10, logLik(pfilter(mf,Np=5000)))

ll <- logmeanexp(evals,se=TRUE)

mf %>% coef() %>% bind_rows() %>%

bind_cols(loglik=ll[1],loglik.se=ll[2])

} -> results

On 12 processors, this local investigation took 18 sec for the maximization
and 8 sec for the likelihood evaluation.

37 / 106

Iterated filtering in practice A local search of the likelihood surface

Estimating the likelihood III

These repeated stochastic maximizations can also show us the geometry of
the likelihood surface in a neighborhood of this point estimate:

pairs(~loglik+Beta+eta+rho,data=results,pch=16)

38 / 106

Iterated filtering in practice A local search of the likelihood surface

Estimating the likelihood IV

39 / 106

Iterated filtering in practice A local search of the likelihood surface

Building up a picture of the likelihood surface

This plot shows a hint of a ridge in the likelihood surface (cf. the β-η
panel). However, the sampling is as yet too sparse to give a clear picture.
We add these newly explored points to our database,

read_csv("measles_params.csv") %>%

bind_rows(results) %>%

arrange(-loglik) %>%

write_csv("measles_params.csv")

and move on to a more thorough exploration of the likelihood surface.

40 / 106

Searching for the MLE

Outline

1 Introduction

2 Classification of statistical methods for POMP models

3 Iterated filtering in theory

4 Iterated filtering in practice

5 Searching for the MLE

6 The investigation continues. . . .

7 Exercises

41 / 106

Searching for the MLE A global search

A global search of the likelihood surface

When carrying out parameter estimation for dynamic systems, we
need to specify beginning values for both the dynamic system (in the
state space) and the parameters (in the parameter space).

To avoid confusion, we use the term “initial values” to refer to the
state of the system at t0 and “starting values” to refer to the point in
parameter space at which a search is initialized.

Practical parameter estimation involves trying many starting values
for the parameters.

One way to approach this is to choose a large box in parameter space
that contains all remotely sensible parameter vectors.

If an estimation method gives stable conclusions with starting values
drawn randomly from this box, this gives some confidence that an
adequate global search has been carried out.

42 / 106

Searching for the MLE A global search

A global search of the likelihood surface II

For our measles model, a box containing reasonable parameter values
might be β ∈ (5, 80), ρ ∈ (0.2, 0.9), η ∈ (0, 1).
We are now ready to carry out likelihood maximizations from diverse
starting points.

set.seed(2062379496)

runif_design(

lower=c(Beta=5,rho=0.2,eta=0),

upper=c(Beta=80,rho=0.9,eta=1),

nseq=400

) -> guesses

mf1 <- mifs_local[[1]]

43 / 106

randall-stat-ionides

Searching for the MLE A global search

A global search of the likelihood surface III

foreach(guess=iter(guesses,"row"), .combine=rbind) %dopar% {
library(pomp)

library(tidyverse)

mf1 %>%

mif2(params=c(guess,fixed_params)) %>%

mif2(Nmif=100) -> mf

replicate(

10,

mf %>% pfilter(Np=5000) %>% logLik()

) %>%

logmeanexp(se=TRUE) -> ll

mf %>% coef() %>% bind_rows() %>%

bind_cols(loglik=ll[1],loglik.se=ll[2])

} -> results

44 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Searching for the MLE A global search

A global search of the likelihood surface IV

The above codes run one search from each of 400 starting values.

Each search consists of an initial run of 50 IF2 iterations, followed by
another 100 iterations.

These codes exhibit a general pomp behavior:

Re-running a command on an object (i.e., mif2 on mf1) created by the
same command preserves the algorithmic arguments.
In particular, running mif2 on the result of a mif2 computation re-runs
IF2 from the endpoint of the first run.
In the second computation, by default, all algorithmic parameters are
preserved; here we overrode the default choice of Nmif.

Following the mif2 computations, the particle filter is used to
evaluate the likelihood, as before.

45 / 106

Searching for the MLE A global search

A global search of the likelihood surface V

In contrast to the local-search codes above, here we return only the
endpoint of the search, together with the likelihood estimate and its
standard error in a named vector.

The best result of this search had a likelihood of -104.3 with a
standard error of 0.04.

This took 2.1 minutes altogether using 250 processors.

46 / 106

Searching for the MLE A global search

A global search of the likelihood surface VI

Again, we attempt to visualize the global geometry of the likelihood
surface using a scatterplot matrix. In particular, here we plot both the
starting values (grey) and the IF2 estimates (red).

read_csv("measles_params.csv") %>%

filter(loglik>max(loglik)-50) %>%

bind_rows(guesses) %>%

mutate(type=if_else(is.na(loglik),"guess","result")) %>%

arrange(type) -> all

pairs(~loglik+Beta+eta+rho, data=all, pch=16, cex=0.3,

col=ifelse(all$type=="guess",grey(0.5),"red"))

47 / 106

Searching for the MLE A global search

A global search of the likelihood surface VII

48 / 106

Searching for the MLE A global search

A global search of the likelihood surface VIII

We see that optimization attempts from diverse remote starting
points converge on a particular region in parameter space.

The estimates have comparable likelihoods, despite their considerable
variability.

This gives us some confidence in our maximization procedure.

49 / 106

Searching for the MLE A global search

A global search of the likelihood surface IX

The projections of the estimates give us “poor man’s profiles”:

all %>%

filter(type=="result") %>%

filter(loglik>max(loglik)-10) %>%

ggplot(aes(x=eta,y=loglik))+

geom_point()+

labs(

x=expression(eta),

title="poor man’s profile likelihood"

)

50 / 106

Searching for the MLE A global search

A global search of the likelihood surface X

51 / 106

randall-stat-ionides

Searching for the MLE Profile likelihood

Profile likelihood over η

The curvature displayed in the upper envelope of the above plot
suggests that there is indeed information in the data with respect to
the susceptible fraction, η.

To solidify this evidence, let’s compute a profile likelihood over this
parameter.

Recall that this means determining, for each value of η, the best
likelihood that the model can achieve.

To do this, we’ll first bound the uncertainty by putting a box around
the highest-likelihood estimates we’ve found so far.

Within this box, we’ll choose some random starting points, for each
of several values of η.

52 / 106

Searching for the MLE Profile likelihood

Profile likelihood over η II

read_csv("measles_params.csv") %>%

filter(loglik>max(loglik)-20,loglik.se<2) %>%

sapply(range) -> box

box

Beta mu_IR rho k eta N

[1,] 1.782037 2 0.03431374 10 0.03272262 38000

[2,] 75.170745 2 0.75966698 10 0.99984295 38000

loglik loglik.se

[1,] -123.9674 0.01543941

[2,] -104.2873 0.23421034

53 / 106

Searching for the MLE Profile likelihood

Profile likelihood over η III

freeze(seed=1196696958,

profile_design(

eta=seq(0.01,0.95,length=40),

lower=box[1,c("Beta","rho")],

upper=box[2,c("Beta","rho")],

nprof=15, type="runif"

)) -> guesses

plot(guesses)

54 / 106

randall-stat-ionides

randall-stat-ionides

Searching for the MLE Profile likelihood

Profile likelihood over η IV

55 / 106

Searching for the MLE Profile likelihood

Profile likelihood over η V

Now, we’ll start one independent sequence of iterated filtering
operations from each of these points.

We’ll be careful to keep η fixed.

This is accomplished by not giving this parameter a random
perturbation in the mif2 call.

56 / 106

Searching for the MLE Profile likelihood

Profile likelihood over η VI

foreach(guess=iter(guesses,"row"), .combine=rbind) %dopar% {
library(pomp)

library(tidyverse)

mf1 %>%

mif2(params=c(guess,fixed_params),

rw.sd=rw.sd(Beta=0.02,rho=0.02)) %>%

mif2(Nmif=100,cooling.fraction.50=0.3) -> mf

replicate(

10,

mf %>% pfilter(Np=5000) %>% logLik()) %>%

logmeanexp(se=TRUE) -> ll

mf %>% coef() %>% bind_rows() %>%

bind_cols(loglik=ll[1],loglik.se=ll[2])

} -> results

57 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Searching for the MLE Profile likelihood

Visualizing profile likelihood

As always, we save the results in our global database and plot the results.

read_csv("measles_params.csv") %>%

bind_rows(results) %>%

filter(is.finite(loglik)) %>%

arrange(-loglik) %>%

write_csv("measles_params.csv")

read_csv("measles_params.csv") %>%

filter(loglik>max(loglik)-10) -> all

pairs(~loglik+Beta+eta+rho,data=all,pch=16)

58 / 106

Searching for the MLE Profile likelihood

Visualizing profile likelihood II

59 / 106

randall-stat-ionides

Searching for the MLE Profile likelihood

Visualizing profile likelihood III

Plotting just the results of the profile calculation reveals that, while some
of the IF2 runs either become “stuck” on local minima or run out of
opportunity to reach the heights of the likelihood surface, many of the
runs converge on high likelihoods.

results %>%

ggplot(aes(x=eta,y=loglik))+

geom_point()

60 / 106

Searching for the MLE Profile likelihood

Visualizing profile likelihood IV

61 / 106

randall-stat-ionides

Searching for the MLE Profile likelihood

Visualizing profile likelihood V

A closer look shows what at first appears to be quite a flat surface over
much of the explored range of η. Note that this appearance is due to the
vertical scale, which is driven by the very low likelihoods associated with
the smallest values of η.

results %>%

filter(is.finite(loglik)) %>%

group_by(round(eta,5)) %>%

filter(rank(-loglik)<3) %>%

ungroup() %>%

filter(loglik>max(loglik)-20) %>%

ggplot(aes(x=eta,y=loglik))+

geom_point()

62 / 106

Searching for the MLE Profile likelihood

Visualizing profile likelihood VI

63 / 106

Searching for the MLE Profile likelihood

Visualizing profile likelihood VII

Focusing on just the top of the surface shows that, in fact, one is able to
estimate η using these data. In the following plot, the cutoff for the 95%
confidence interval (CI) is shown.

64 / 106

Searching for the MLE Profile likelihood

Visualizing profile likelihood VIII

maxloglik <- max(results$loglik,na.rm=TRUE)

ci.cutoff <- maxloglik-0.5*qchisq(df=1,p=0.95)

results %>%

filter(is.finite(loglik)) %>%

group_by(round(eta,5)) %>%

filter(rank(-loglik)<3) %>%

ungroup() %>%

ggplot(aes(x=eta,y=loglik))+

geom_point()+

geom_smooth(method="loess",span=0.25)+

geom_hline(color="red",yintercept=ci.cutoff)+

lims(y=maxloglik-c(5,0))

65 / 106

Searching for the MLE Profile likelihood

Visualizing profile likelihood IX

66 / 106

randall-stat-ionides

randall-stat-ionides

Searching for the MLE Profile likelihood

Visualizing profile likelihood X

As one varies η across the profile, the model compensates by
adjusting the other parameters.

It can be very instructive to understand how the model does this.

For example, how does the reporting efficiency, ρ, change as η is
varied?

We can plot ρ vs η across the profile.

This is called a profile trace.

67 / 106

Searching for the MLE Profile likelihood

Visualizing profile likelihood XI

results %>%

filter(is.finite(loglik)) %>%

group_by(round(eta,5)) %>%

filter(rank(-loglik)<3) %>%

ungroup() %>%

mutate(in_ci=loglik>max(loglik)-1.92) %>%

ggplot(aes(x=eta,y=rho,color=in_ci))+

geom_point()+

labs(

color="inside 95% CI?",

x=expression(eta),

y=expression(rho),

title="profile trace"

)

68 / 106

randall-stat-ionides

Searching for the MLE Profile likelihood

Visualizing profile likelihood XII

69 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Searching for the MLE Profile likelihood

Profile over ρ

While the above profile trace is suggestive that the 95% CI for ρ must be
between roughly 3% and 20%, to confirm this, we should construct a
proper profile likelihood over ρ. We do so now.
This time, we will initialize the IF2 computations at points we have
already established have high likelihoods.

read_csv("measles_params.csv") %>%

group_by(cut=round(rho,2)) %>%

filter(rank(-loglik)<=10) %>%

ungroup() %>%

arrange(-loglik) %>%

select(-cut,-loglik,-loglik.se) -> guesses

70 / 106

Searching for the MLE Profile likelihood

Profile over ρ II

foreach(guess=iter(guesses,"row"), .combine=rbind) %dopar% {
library(pomp)

library(tidyverse)

mf1 %>%

mif2(params=guess,

rw.sd=rw.sd(Beta=0.02,eta=ivp(0.02))) %>%

mif2(Nmif=100,cooling.fraction.50=0.3) %>%

mif2() -> mf

replicate(

10,

mf %>% pfilter(Np=5000) %>% logLik()) %>%

logmeanexp(se=TRUE) -> ll

mf %>% coef() %>% bind_rows() %>%

bind_cols(loglik=ll[1],loglik.se=ll[2])

} -> results

71 / 106

Searching for the MLE Profile likelihood

Profile over ρ: results

results %>%

filter(is.finite(loglik)) -> results

pairs(~loglik+Beta+eta+rho,data=results,pch=16)

72 / 106

Searching for the MLE Profile likelihood

Profile over ρ: results II

73 / 106

Searching for the MLE Profile likelihood

Profile over ρ: results III

results %>%

filter(loglik>max(loglik)-10,loglik.se<1) %>%

group_by(round(rho,2)) %>%

filter(rank(-loglik)<3) %>%

ungroup() %>%

ggplot(aes(x=rho,y=loglik))+

geom_point()+

geom_hline(

color="red",

yintercept=max(results$loglik)-0.5*qchisq(df=1,p=0.95)

)

74 / 106

Searching for the MLE Profile likelihood

Profile over ρ: results IV

75 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Searching for the MLE Profile likelihood

Profile over ρ: results V

results %>%

filter(loglik>max(loglik)-0.5*qchisq(df=1,p=0.95)) %>%

summarize(min=min(rho),max=max(rho)) -> rho_ci

The data appear to be consistent with reporting efficiencies in the 3–17%
range (95% CI).

76 / 106

The investigation continues. . . .

Outline

1 Introduction

2 Classification of statistical methods for POMP models

3 Iterated filtering in theory

4 Iterated filtering in practice

5 Searching for the MLE

6 The investigation continues. . . .

7 Exercises

77 / 106

The investigation continues. . . . Making predictions

Parameter estimates as model predictions

The estimated parameters are one kind of model prediction.

When we can estimate parameters using other data, we can test these
predictions.

In the case of a highly contagious, immunizing childhood infection
such as measles, we can obtain an estimate of the reporting efficiency,
ρ by simply regressing cumulative cases on cumulative births
(Anderson and May, 1991) over many years.

When we do this for Consett, we see that the reporting efficiency is
roughly 60%.

78 / 106

The investigation continues. . . . Making predictions

Parameter estimates as model predictions II

Since such a value makes the outbreak data quite unlikely, the
prediction does not appear to be borne out.

We can conclude that one or more of our model assumptions is
inconsistent with the data.

Let’s revisit our assumption that the infectious period is known to be
0.5 wk.

Indeed, it would not be surprising were we to find that the effective
infectious period, at the population scale, were somewhat shorter
than the clinical infectious period.

79 / 106

The investigation continues. . . . Making predictions

Parameter estimates as model predictions III

For example, confinement of patients should reduce contact rates,
and might therefore curtail the effective infectious period.

To investigate this, we’ll relax our assumption about the value of µIR.

80 / 106

The investigation continues. . . . Searching in another direction

Another global search

We will estimate the model under the assumption that ρ = 0.6, but
without making assumptions about the duration of the infectious period.
As before, we’ll construct a random design of starting parameters.

freeze(seed=55266255,

runif_design(

lower=c(Beta=5,mu_IR=0.2,eta=0),

upper=c(Beta=80,mu_IR=5,eta=0.99),

nseq=1000

)) %>%

mutate(

rho=0.6,

k=10,

N=38000

) -> guesses

81 / 106

The investigation continues. . . . Searching in another direction

Another global search II

For each of these starting points, we’ll run a series of IF2
computations.

Since we have gained some experience applying mif2 to this model
and these data, we have some expectation about how much
computation is required.

In the following, we’ll use a lot more computational power than we
have so far.

82 / 106

The investigation continues. . . . Searching in another direction

Another global search III

For each of the starting points, we’ll first perform 100 IF2 iterations:

library(pomp)

library(tidyverse)

measSIR %>%

mif2(params=guess, Np=2000, Nmif=100,

cooling.fraction.50=0.5,

partrans=parameter_trans(

log=c("Beta","mu_IR"),

logit="eta"), paramnames=c("Beta","mu_IR","eta"),

rw.sd=rw.sd(Beta=0.02,mu_IR=0.02,eta=ivp(0.02))) -> mf

We use random perturbations of the same magnitude as before, taking
care to transform the parameters we are estimating.

83 / 106

The investigation continues. . . . Searching in another direction

Another global search IV

We adopt a simulated tempering approach (following a metallurgical
analogy), in which we increase the size of the random perturbations some
amount (i.e., “reheat”), and then continue cooling.

mf %>%

mif2(

Nmif=100,rw.sd=rw.sd(Beta=0.01,mu_IR=0.01,eta=ivp(0.01))

) %>%

mif2(

Nmif=100,

rw.sd=rw.sd(Beta=0.005,mu_IR=0.005,eta=ivp(0.005))

) -> mf

84 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

The investigation continues. . . . Searching in another direction

Another global search V

We wrap the above in a foreach loop as before and take care to evaluate
the likelihood at each end-point using pfilter.
See the R code for this lesson to see exactly how this is done.
The computations above required 6.3 minutes on 250 processors.

read_csv("measles_params.csv") %>%

filter(loglik>max(loglik)-20) -> all

pairs(~loglik+rho+mu_IR+Beta+eta,data=all,pch=16,cex=0.3,

col=if_else(round(all$rho,3)==0.6,1,4))

85 / 106

https://raw.githubusercontent.com/kingaa/sbied/master/mif/main.R

The investigation continues. . . . Searching in another direction

Another global search VI

86 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

The investigation continues. . . . Searching in another direction

Another global search VII

results %>%

filter(loglik>max(loglik)-20,loglik.se<1) %>%

ggplot(aes(x=mu_IR,y=loglik))+

geom_point()+

geom_hline(

color="red",

yintercept=max(results$loglik)-0.5*qchisq(df=1,p=0.95)

)

87 / 106

The investigation continues. . . . Searching in another direction

Another global search VIII

88 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

The investigation continues. . . . Searching in another direction

Profile over infectious period

To make inferences about µIR, we can again compute a profile likelihood.
As before, we bound the region we will search:

read_csv("measles_params.csv") %>%

filter(

loglik>max(loglik)-20,

loglik.se<2,

abs(rho-0.6)<0.01

) %>%

sapply(range) -> box

89 / 106

The investigation continues. . . . Searching in another direction

Profile over infectious period II

freeze(seed=610408798,

profile_design(

mu_IR=seq(0.2,2,by=0.1),

lower=box[1,c("Beta","eta")],

upper=box[2,c("Beta","eta")],

nprof=100, type="runif"

)) %>%

mutate(

N=38000,

rho=0.6,

k=10

) -> guesses

90 / 106

The investigation continues. . . . Searching in another direction

Profile over infectious period III

foreach(guess=iter(guesses,"row"), .combine=rbind) %dopar% {
library(pomp)

library(tidyverse)

measSIR %>%

mif2(params=guess, Np=2000, Nmif=100,

partrans=parameter_trans(log="Beta",logit="eta"),

paramnames=c("Beta","eta"), cooling.fraction.50=0.5,

rw.sd=rw.sd(Beta=0.02,eta=ivp(0.02))

) %>% mif2(Nmif=100) %>%

mif2(Nmif=100,rw.sd=rw.sd(Beta=0.01,eta=ivp(0.01))) %>%

mif2(Nmif=100,rw.sd=rw.sd(Beta=0.005,eta=ivp(0.005))) -> mf

replicate(10,mf %>% pfilter(Np=5000) %>% logLik()) %>%

logmeanexp(se=TRUE) -> ll

mf %>% coef() %>% bind_rows() %>%

bind_cols(loglik=ll[1],loglik.se=ll[2])

} -> results

91 / 106

The investigation continues. . . . Searching in another direction

Infectious period profile

results %>%

group_by(round(mu_IR,2)) %>%

filter(rank(-loglik)<=1) %>%

ungroup() %>%

ggplot(aes(x=mu_IR,y=loglik))+

geom_point()+

geom_hline(

color="red",

yintercept=max(results$loglik)-0.5*qchisq(df=1,p=0.95)

)

92 / 106

The investigation continues. . . . Searching in another direction

Infectious period profile II

93 / 106

The investigation continues. . . . Searching in another direction

Infectious period profile III

This suggests that ρ = 0.6 is consistent only with smaller values of
µIR, and hence longer infectious periods than are possible if the
duration of shedding is actually less than one week.

Thus the model is incapable of reconciling both an infectious period
of less than one week and a reporting rate of 60%.

What structural changes to the model might we make to improve its
ability to explain the data?

94 / 106

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

Exercises

Outline

1 Introduction

2 Classification of statistical methods for POMP models

3 Iterated filtering in theory

4 Iterated filtering in practice

5 Searching for the MLE

6 The investigation continues. . . .

7 Exercises

95 / 106

Exercises

Exercise 4.1. Fitting the SEIR model

Following the template above, estimate the parameters and likelihood of
the SEIR model you implemented in the earlier lessons. Specifically:

(a) First conduct a local search and then a global search using the
multi-stage, multi-start method displayed above.

(b) How does the maximized likelihood compare with what we obtained
for the SIR model?

(c) How do the parameter estimates differ?

You will need to tailor the intensity of your search to the computational
resources at your disposal. In particular, choose the number of starts,
number of particles employed, and the number of IF2 iterations to perform
in view of the size and speed of your machine.

Worked solution to the Exercise

96 / 106

./Q_fit_seir.html

Exercises

Exercise 4.2. Fitting all parameters

In all of the foregoing, we have assumed a fixed value of the dispersion
parameter k, of the negative binomial measurement model. We’ve also
fixed one or the other of µIR, η. Now attempt to estimate all the
parameters simultaneously. How much is the fit improved?

Worked solution to the Exercise

97 / 106

./Q_fitall.html

Exercises

Exercise 4.3. Construct a profile likelihood

How strong is the evidence about the contact rate, β, given this model
and data? Use mif2 to construct a profile likelihood. Due to time
constraints, you may be able to compute only a preliminary version.
It is also possible to profile over the basic reproduction number,
R0 = β/µIR. Is this more or less well determined than β for this model
and data?

98 / 106

Exercises

Exercise 4.4. Checking the source code

Check the source code for the measSIR pomp object, using the spy
command. Does the code implement the model described?

99 / 106

Exercises

Exercise 4.4. Checking the source code II

For various reasons, it can be surprisingly hard to make sure that the
written equations and the code are perfectly matched. Papers should be
written to be readable, and therefore people rarely choose to clutter papers
with numerical details which they hope and believe are scientifically
irrelevant.

(a) What problems can arise due to the conflict between readability and
reproducibility?

(b) What solutions are available?

100 / 106

Exercises

Exercise 4.4. Checking the source code III

Suppose that there is an error in the coding of rprocess and suppose
that plug-and-play statistical methodology is used to infer parameters. As
a conscientious researcher, you carry out a simulation study to check the
soundness of your inference methodology on this model. To do this, you
use simulate to generate realizations from the fitted model and checking
that your parameter inference procedure recovers the known parameters,
up to some statistical error.

(a) Will this procedure help to identify the error in rprocess?

(b) If not, how might you debug rprocess?

(c) What research practices help minimize the risk of errors in simulation
code?

Worked solution to the Exercise

101 / 106

./Q_check_code.html

Exercises

Exercise 4.5: Choosing the algorithmic settings for IF2

Have a look at our advice on tuning IF2.

102 / 106

./if2_settings.html

Exercises

References

Anderson RM, May RM (1991). Infectious Diseases of Humans. Oxford
Univesity Press, Oxford.

Andrieu C, Doucet A, Holenstein R (2010). “Particle Markov chain Monte
Carlo methods.” Journal of the Royal Statistical Society, Series B,
72(3), 269–342. doi: 10.1111/j.1467-9868.2009.00736.x.

He D, Ionides EL, King AA (2010). “Plug-and-play inference for disease
dynamics: measles in large and small populations as a case study.”
Journal of the Royal Society, Interface, 7, 271–283.
doi: 10.1098/rsif.2009.0151.

103 / 106

https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1098/rsif.2009.0151

Exercises

References II

Ionides EL (2011). “Discussion on “Feature Matching in Time Series
Modeling” by Y. Xia and H. Tong.” Statistical Science, 26, 49–52.
doi: 10.1214/11-STS345C.

Ionides EL, Bretó C, King AA (2006). “Inference for nonlinear dynamical
systems.” Proceedings of the National Academy of Sciences of the
U.S.A., 103(49), 18438–18443. doi: 10.1073/pnas.0603181103.

Ionides EL, Nguyen D, Atchadé Y, Stoev S, King AA (2015). “Inference
for dynamic and latent variable models via iterated, perturbed Bayes
maps.” PNAS, 112(3), 719–724. doi: 10.1073/pnas.1410597112.

104 / 106

https://doi.org/10.1214/11-STS345C
https://doi.org/10.1073/pnas.0603181103
https://doi.org/10.1073/pnas.1410597112

Exercises

References III

King AA, Nguyen D, Ionides EL (2016). “Statistical Inference for Partially
Observed Markov Processes via the R Package pomp.” Journal of
Statistical Software, 69(12), 1–43. doi: 10.18637/jss.v069.i12.

Shrestha S, King AA, Rohani P (2011). “Statistical Inference for
Multi-Pathogen Systems.” PLoS Computational Biology, 7(8),
e1002135. doi: 10.1371/journal.pcbi.1002135.

Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH (2009).
“Approximate Bayesian computation scheme for parameter inference
and model selection in dynamical systems.” Journal of the Royal Society
Interface, 6, 187–202. doi: 10.1098/rsif.2008.0172.

105 / 106

https://doi.org/10.18637/jss.v069.i12
https://doi.org/10.1371/journal.pcbi.1002135
https://doi.org/10.1098/rsif.2008.0172

Exercises

License, acknowledgments, and links

This lesson is prepared for the Simulation-based Inference for
Epidemiological Dynamics module at the 2020 Summer Institute in
Statistics and Modeling in Infectious Diseases, SISMID 2020.

The materials build on previous versions of this course and related
courses.

Licensed under the Creative Commons Attribution-NonCommercial
license. Please share and remix non-commercially, mentioning its

origin.

Produced with R version 4.1.1 and pomp version 4.0.11.0.

Compiled on December 4, 2021.

Back to course homepage
R code for this lesson

106 / 106

https://kingaa.github.io/sbied/
https://kingaa.github.io/sbied/
https://www.biostat.washington.edu/suminst/sismid
../acknowledge.html
../acknowledge.html
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
../index.html
https://raw.githubusercontent.com/kingaa/sbied/master/mif/main.R

	Introduction
	Classification of statistical methods for POMP models
	The plug-and-play property
	Full information vs. feature-based methods
	Bayesian vs. frequentist approaches
	Summary

	Iterated filtering in theory
	Iterated filtering in practice
	An example problem
	Setting up the estimation problem
	A local search of the likelihood surface

	Searching for the MLE
	A global search
	Profile likelihood

	The investigation continues….
	Making predictions
	Searching in another direction

	Exercises
	References

