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1 Concepts of stationarity

Definition: Weak and strong stationarity

• A time series model which is both mean stationary and covariance stationary is weakly station-
ary or second order stationary.

• A time series model for which all joint distributions are invariant to shifts in time is strongly
stationary or strictly stationary.

• Formally, this means that for any collection of times (t1, t2, . . . , tK), the joint distribution of
observations at these times should be the same as the joint distribution at (t1+τ, t2+τ, . . . , tK +τ)
for any τ .

• For equally spaced observations, this becomes: for any collection of timepoints n1, . . . , nK , and for
any lag h, the joint density function of (Yn1 , Yn2 , . . . , YnK

) is the same as the joint density function
of (Yn1+h, Yn2+h, . . . , YnK+h).

• In our general notation for densities, this strict stationarity requirement can be written as

fYn1 ,Yn2 ,...,YnK
(y1, y2, . . . , yK) (1)

= fYn1+h,Yn2+h,...,YnK+h
(y1, y2, . . . , yK). (2)

• Strict stationarity implies weak stationarity (check this).

Question 3.1. How could we assess whether a weak stationary model is appropriate for a time series
dataset?
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Question 3.2. How could we assess whether a strictly stationary model is appropriate for a time series
dataset?

Question 3.3. Is it usual for time series to be well modeled as stationary (either weakly or strictly)?

Question 3.4. If data often do not show stationary behavior, why do many fundamental models have
stationarity?

Question 3.5. Is a stationary model appropriate for either (or both) the time series below? Explain.
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2 White noise

White noise
A time series model ε1:N which is weakly stationary with

E[εn] = 0

Cov(εm, εn) =

{
σ2, if m = n
0, if m 6= n

,

is said to be white noise with variance σ2.

• The “noise” is because there’s no pattern, just random variation. If you listened to a realization
of white noise as an audio file, you would hear a static sound.

• The “white” is because all freqencies are equally represented. This will become clear when we do
frequency domain analysis of time series.

• Signal processing—sending and receiving signals on noisy channels—was a motivation for early
time series analysis.

Example: Gaussian white noise
In time series analysis, a sequence of independent identically distributed (iid) Normal random variables
with mean zero and variance σ2 is known as Gaussian white noise. We write this model as

ε1:N ∼ iidN [0, σ2].

Example: Binary white noise
Let ε1:N be iid with

εn =

{
1, with probability 1/2
−1, with probability 1/2

.
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We can check that E[εn] = 0, Var(εn) = 1 and Cov(εm, εn) = 0 for m 6= n. Therefore, ε1:N is white
noise.
Similarly, for any p ∈ (0, 1), we could have

εn =

{
(1− p)/p, with probability p
−1, with probability 1− p .

Example: Sinusoidal white noise
Let εn = sin(2πnU), with a single draw U ∼ Uniform[0, 1] determining the time series model for all
n ∈ 1 : N . We will show this is an example of a weakly stationary time series that is not strictly
stationary.

Question 3.6. Show that ε1:N is weakly stationary, and is white noise!

Question 3.7. Show that ε1:N is NOT strictly stationary.

Hint: consider the following plot of ε1:3 as a function of U . ε1 is shown as the black line; ε2 is the red
line; ε3 is the blue line.
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3 Building models using white noise

Using white noise to build other time series models
Reminder: Why do we even need time series models?

• All statistical tests (i.e., whenever we use data to answer a question) rely on having a model for
the data. The model is sometimes called the assumptions for the test.

• If our model is wrong, then any conclusions drawn from it may be wrong. Our error could be
small and insignificant, or disastrous.

• Time series data collected close in time are often more similar than a model with iid variation
would predict. We need models that have this property, and we must work out how to test
interesting hypotheses for these models.

The AR(p) autoregressive model

• The order p autoregressive model, abbreviated to AR(p), is

[M1] Yn = φ1Yn−1 + φ2Yn−2 + · · ·+ φpYn−p + εn,

where {εn} is a white noise process.

• Often, we consider the Gaussian AR(p) model, where {εn} is a Gaussian white noise process.

• M1 is a stochastic difference equation. It is a difference equation (also known as a recurrence
relation) since each time point is specified recursively in terms of previous time points. Stochastic
just means random.

• To complete the model, we need to initialize the solution to the stochastic difference equation.
Supposing we want to specify a distribution for Y1:N , we have some choices in how to set up the
initial values.

1. We can specify Y1:p explicitly, to get the recursion started.

2. We can specify Y1−p:0 explicitly.

3. For either of these choices, we can define these initial values either to be additional parameters in
the model (i.e., not random) or to be specified random variables.

4. If we want our model is strictly stationary, we must initialize so that Y1:p have the proper joint
distribution for this stationary model.

• Assuming the initialization has mean zero, M1 implies that E[Yn] = 0 for all n. For additional
generality, we could add a constant mean µ.

• Let’s investigate a particular Gaussian AR(1) process, as an exercise.

[M2] Yn = 0.6Yn−1 + εn,

where εn ∼ iidN [0, 1]. We will initialize with Y1 ∼ N [0, 1.56].

Simulating an autoregressive model
Looking at simulated sample paths is a good way to get some intuition about a random process model.
We will do this for the AR(1) model M2. One approach is to use the arima.sim function in R.

5

https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/wiki/Recurrence_relation


set.seed(123456789)

ar1 <- arima.sim(list(ar=0.6),n=100,sd=1)

plot(ar1,type="l")

• Does your intuition tell you that these simulated data are evidence for a model with a linear trend?

• The eye looks for patterns in data, and often finds them even when there is no strong statistical
evidence.

• That is why we need statistical tests!

• It is easy to see patterns even in white noise. Dependent models produce spurious patterns even
more often.

• Play with simulating different models with different seeds to train your intuition.

We can also simulate model M2 directly by writing the model equation:

set.seed(123456789)

N <- 100

X <- numeric(N)

X[1] <- rnorm(1,sd=sqrt(1.56))

for(n in 2:N) X[n] <- 0.6 * X[n-1] + rnorm(1)

plot(X,type="l")

points(lag(ar1,-13),col="red",pch=1)

Our simulation matches arima.sim perfectly with a shift of 13 time points. Explain this. Hint: How
does arima.sim initialize the simulation?
Question 3.8. What are the advantages and disadvantages of using arima.sim over the direct simu-
lation method?
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Question 3.9. Compute the autcovariance function for model M2.

The MA(q) moving average model

• The order q moving average model, abbreviated to MA(q), is

[M3] Yn = εn + θ1εn−1 + · · ·+ θqεn−q,

where {εn} is a white noise process.

• To fully specify Y1:N we must specify the joint distribution of ε1−q:N .

• Often, we consider the Gaussian MA(q) model, where {εn} is a Gaussian white noise process.

• In M3, we’ve defined a zero mean process. We could add a mean µ.

• Let’s investigate a particular Gaussian MA(2) process, as an exercise.

[M4] Yn = εn + 1.5εn−1 + εn−2,

where εn ∼ iidN [0, 1].

Simulating a moving average model
We simulate M4 using the same methods as for the autoregressive model.

N <- 100

set.seed(123456789)

X1 <- arima.sim(list(ma=c(1.5,1)),n=N,sd=1)

set.seed(123456789)

epsilon <- rnorm(N+2)

X2 <- numeric(N)

for(n in 1:N) X2[n] <- epsilon[n+2]+1.5*epsilon[n+1]+epsilon[n]

plot(X1,type="l") ; plot(X2,type="l")
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X1 and X2 look identical. We can check this

all(X1==X2)

[1] TRUE

Do you agree that the spurious evidence for a trend that we saw for the AR(1) model is still somewhat
present for the MA(2) simulation? Let’s see if we can also see it in the underlying white noise process:

N <- 100

set.seed(123456789)

epsilon <- rnorm(N)

plot(epsilon,type="l")

To me, the trend-like behavior is not visually apparent in the white noise that “drives” the AR and MA
models.

The random walk model

• The random walk model is

[M5] Yn = Yn−1 + εn,

where {εn} is white noise. Unless otherwise specified, we usually initialize with Y0 = 0.

• If {εn} is Gaussian white noise, then we have a Gaussian random walk.

• The random walk model is a special case of AR(1) with φ1 = 1.

• The stochastic difference equation in M5 has an exact solution,

Yn =

n∑
k=1

εk.

• We can also call Y0:N an integrated white noise process. We think of summation as a discrete
version of integration.
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• If data y∗1:N are modeled as a random walk, the value of Y0 is usually an unknown. Rather than
introducing an unknown parameter to our model, we may initialize our model at time t1 with
Y1 = y∗1 .

• The first difference time series z2:N is defined by

zn = ∆y∗n = y∗n − y∗n−1 (3)

• From a time series of length N , we only get N − 1 first differences.

• A random walk model for y∗1:N is essentially equivalent to a white noise model for z2:N = ∆y∗2:N ,
apart from the issue of initialization.

The random walk with drift

• The random walk with drift model is given by the difference equation

[M6] Yn = Yn−1 + µ+ εn,

driven by a white noise process {εn}. This has solution

Yn = Y0 + nµ+

n∑
k=1

εk.

• Here, µ is the mean of the increments rather than the random walk process itself.

• As for the random walk without drift, we must define Y0 to initialize the model and complete the
model specification. Unless otherwise specified, we usually initialize with Y0 = 0.

4 Modeling financial returns using white noise

Modeling financial markets as a random walk
The theory of efficient financial markets suggests that the logarithm of a stock market index (or the
value of an individual stock, or other investment) might behave like a random walk with drift. We test
this on daily S&P 500 data, downloaded from yahoo.com.

sp <- read.table("sp500.csv",sep=",",header=TRUE)

date <- as.Date(sp$Date)

sp500 <- sp$Close

plot(sp500~date,log="y",type="l",xlab="date",ylab="S&P 500")

To train our intuition, we compare the data with simulations from a fitted model. A simple starting
point is a Gaussian random walk with drift, having parameters estimated from the data.
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mu <- mean(diff(log(sp500)))

sigma <- sd(diff(log(sp500)))

N <- length(sp500)

X1 <- log(sp500[1])+cumsum(c(0,rnorm(N-1,mean=mu,sd=sigma)))

X2 <- log(sp500[1])+cumsum(c(0,rnorm(N-1,mean=mu,sd=sigma)))

plot(X1,type="l") ; plot(X2,type="l")

• This seems reasonable so far. Now we plot the sample autocorrelation function (sample ACF) of
diff(log(sp500)).

• It is bad style to refer to quantities using computer code notation. We should set up mathematical
notation in the text. Let’s try again...

• Let y∗1:N be the time series of S&P 500 daily closing values downloaded from yahoo.com. Let
zn = ∆ log y∗n = log y∗n − log y∗n−1.

• We plot the sample autocorrelation function of the time series of S&P 500 returns, z2:N .

z <- diff(log(sp500))

acf(z)

• This looks close to the ACF of white noise. There is some evidence for a small nonzero autocor-
relation at some lags.

• Here, we have have a long time series (N = 24126). For such a long time series, statistically
significant effects may be practically insignificant.

Question 3.10. Why may the length of the time series be relevant when considering practical versus
statistical significance?
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• It seems like the S&P 500 returns (centered, by subtracting the sample mean) may be a real-life
time series well modeled by white noise.

• Looking at the absolute value of the centered returns is thought-provoking.

Question 3.11. How should we interpret the following plot? To what extent does this plot refute the
white noise model for the centered returns (or, equivalently, the random walk model for the log index
value)?

acf(abs(z-mean(z)),lag.max=200)

Volatility and market inefficiencies

• Nowadays, nobody is surprised that the sample ACF of a financial return time series shows little
or no evidence for autocorrelation.

• Deviations from the efficient market hypothesis, if you can find them, are of interest.

• Also, it remains a challenge to find good models for volatility, the conditional variance process
of a financial return model.

Further reading

• Chapter 1 of Shumway and Stoffer (2017) provides a complementary introduction to time series
analysis.

• If you are relatively new to R, Venables et al. (2021) is a comprehensive introduction.
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