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1 Stationary causal linear processes

Definition: Stationary causal linear process

• A stationary causal linear process is a time series models that can be written as

[M7] Yn = µ+ g0εn + g1εn−1 + g2εn−2 + g3εn−3 + g4εn−4 + . . .

where {εn, n = . . . ,−2,−1, 0, 1, 2, . . . } is a white noise process, defined for all integer timepoints,
with variance Var(εn) = σ2.

• We do not need to define any initial values. The doubly infinite noise process {εn, n = . . . ,−2,−1, 0, 1, 2, . . . }
is enough to define Yn for every n as long as the infinite sum in [M7] converges.

Question 4.1. When does “stationary” here mean weak stationarity, and when does it mean strict
stationary?
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• causal in [M7] refers to {εn} being a causal driver of {Yn}. The value of Yn depends only on noise
process values already determined by time n.

• This matching a requirement that causes must precede effects (wikipedia.org/wiki/Bradford_
Hill_criteria).

• linear refers to linearity of Yn as a function of {εn}.

1.1 The autocovariance of a linear process

The autocovariance function for a linear process

γh = Cov
(
Yn, Yn+h

)
(1)

= Cov

 ∞∑
j=0

gjεn−j ,

∞∑
k=0

gkεn+h−k

 (2)

=

∞∑
j=0

∞∑
k=0

gjgkCov
(
εn−j , εn+h−k

)
(3)

=

∞∑
j=0

gjgj+hσ
2, for h ≥ 0. (4)

• For the autocovariance function to be finite, we need

∞∑
j=0

g2j <∞. (5)

• We assumed we can move
∑∞
j=0

∑∞
k=0 through Cov, discussed below.

• The interchange of expectation and infinite sums cannot be taken for granted. Cov
(∑m

i=1Xi,
∑n
j=1 Yj

)
=∑m

i=1

∑n
j=1 Cov(Xi, Yj) is true for finite m and n, but not necessarily for infinite sums.

• In this course, we do not focus on interchange issues, but we try to notice when we make assump-
tions.

• The interchange of
∑∞

0 and Cov can be justified by requiring a stronger condition,

∞∑
j=0

|gj | <∞. (6)

• The MA(q) model that we defined in equation M3 is an example of a stationary, causal linear
process.

• The general stationary, causal linear process model, M7, can also be called the MA(∞) model.

1.2 Causal and non-causal AR(1) models

A stationary causal linear solution to the AR(1) model, and a non-causal solution
The stochastic difference equation defining the AR(1) model,

[M8] Yn = φYn−1 + εn.

This has a causal solution,
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[M8.1] Yn =
∑∞
j=0 φ

jεn−j .

It also has a non-causal solution,

[M8.2] Yn = −
∑∞
j=1 φ

−jεn+j .

Question 4.2. Work through the algebra to check that M8.1 and M8.2 both solve equation M8.

Convergence of the infinite sums in M8.1 and M8.2
Question 4.3. For what values of φ is the causal solution M8.1 a convergent infinite sum, meaning
that it converges to a random variable with finite variance? For what values is the non-causal solution
M8.2 a convergent infinite sum?

Using the MA(∞) representation to compute the autocovariance of an ARMA model
Question 4.4. The linear process representation can be a convenient way to calculate autocovariance
functions. Use the linear process representation in M8.1, together with our expression for the auto-
covariance of the general linear process M7 in equation 4, to get an expression for the autocovariance
function of the AR(1) model.
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2 ARMA models written using the backshift operator

The backshift operator and the difference operator

• The backshift operator B, also known as the lag operator, is given by

BYn = Yn−1. (7)

• The difference operator ∆ = 1−B is

∆Yn = (1−B)Yn = Yn − Yn−1. (8)

• Powers of the backshift operator correspond to different time shifts, e.g.,

B2Yn = B(BYn) = B(Yn−1) = Yn−2. (9)

• We can also take a second difference,

∆2Yn = (1−B)(1−B)Yn

= (1− 2B +B2)Yn = Yn − 2Yn−1 + Yn−2. (10)

• The backshift operator is linear, i.e.,

B(αXn + βYn) = αBXn + βBYn = αXn−1 + βYn−1 (11)

• Backshift operators and their powers can be added, multiplied by each other, and multiplied by a
scalar.

• Mathematically, backshift operators follow the same rules as the algebra of polynomial functions.

• For example, a distributive rule for α+ βB is

(α+ βB)Yn = (αB0 + βB1)Yn = αYn + βBYn = αYn + βYn−1. (12)

• Mathematical properties we know about polynomials can be used to work with backshift operators.

• The AR, MA and linear process model equations can all be written in terms of polynomials in the
backshift operator.

• Write φ(x) = 1−φ1x−φ2x2− · · ·−φpxp, an order p polynomial, The equation M1 for the AR(p)
model can be rearranged to give

Yn − φ1Yn−1 − φ2Yn−2 − · · · − φpYn−p = εn, (13)

which can be written using the backshift operator as

[M1′] φ(B)Yn = εn.

• Write ψ(x) for a polynomial of order q,

ψ(x) = 1 + ψ1x+ ψ2x
2 + · · ·+ ψqx

q. (14)

• The MA(q) equation M3 is equivalent to

[M3′] Yn = ψ(B)εn.

• If g(x) is a function defined by the Taylor series

g(x) = g0 + g1x+ g2x
2 + g3x

3 + g4x
4 + . . . , (15)

we can write the stationary causal linear process equation [M7] as

[M7′] Yn = µ+ g(B)εn.

• Whatever you know or learn about working with Taylor series expansions helps you understand
AR, MA and ARMA models.
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2.1 The general ARMA model

The general ARMA model

• Putting together M1 and M3 suggests an autoregressive moving average ARMA(p,q) model
given by

[M9] Yn = φ1Yn−1 + φ2Yn−2 + · · ·+ φpYn−p + εn + ψ1εn−1 + · · ·+ ψqεn−q,

where {εn} is a white noise process. Using the backshift operator, we can write this more succinctly
as

[M9′] φ(B)Yn = ψ(B)εn.

• Experience with data analysis suggests that models with both AR and MA components often fit
data better than a pure AR or MA process.

• The general stationary ARMA(p,q) also has a mean µ so we get

[M9′′] φ(B)(Yn − µ) = ψ(B)εn.

Obtaining the MA(∞) representation and autocovariance of the ARMA(1,1) model, Yn =
φYn−1 + εn + ψεn−1.
Step 1. Put the model in the form Yn = g(B)εn.
Formally, we can write

(1− φB)Yn = (1 + ψB)εn, (16)

which algebraically is equivalent to

Yn =

(
1 + ψB

1− φB

)
εn. (17)

We can write this as
Yn = g(B)εn, (18)

where

g(x) =

(
1 + ψx

1− φx

)
. (19)

Step 2. Work out the Taylor series expansion,

g(x) = g0 + g1x+ g2x
2 + g3x

3 + . . . (20)

You can do this either by hand or using your favorite math software.

Step 3. Obtain the MA(∞) representation, by putting (20) into (18).

Step 4. Obtain the autocovariance function, by using the general formula for an MA(∞) process.

Carrying out this calculation is an exercise.

2.2 Causal, invertible ARMA models

Causal, invertible ARMA models

• We say that the ARMA model [M9] is causal if its MA(∞) representation is a convergent series.

• Recall that causality is about writing Yn in terms of the driving noise process {εn, εn−1, εn−2, . . . }.

• Invertibility is about writing εn in terms of {Yn, Yn−1, Yn−2, . . . }.
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• To assess causality, we consider the convergence of the Taylor series expansion of ψ(x)/φ(x) in the
ARMA representation

Yn =
ψ(B)

φ(B)
εn.

• To assess invertibility, we consider the convergence of the Taylor series expansion of φ(x)/ψ(x) in
the inversion of the ARMA model given by

εn =
φ(B)

ψ(B)
Yn.

• Fortunately, there is a simple way to check causality and invertibility without calculating the
Taylor series.

• The ARMA model is causal if the AR polynomial,

φ(x) = 1− φ1x− φ2x2 − · · · − φpxp

has all its roots (i.e., solutions to φ(x) = 0) outside the unit circle in the complex plane.

• The ARMA model is invertible if the MA polynomial,

ψ(x) = 1 + ψ1x+ ψ2x
2 + · · ·+ ψqx

q

has all its roots outside the unit circle.

• We can check the roots using the ‘polyroot‘ function in R. For example, consider the MA(2) model,
Yn = εn + 2εn−1 + 2εn−2. The roots to ψ(x) = 1 + 2x+ 2x2 are

roots <- polyroot(c(1,2,2))

roots

[1] -0.5+0.5i -0.5-0.5i

• Finding the absolute value shows that we have two roots inside the unit circle, so this MA(2)
model is not invertible.

abs(roots)

[1] 0.7071068 0.7071068

• In this case, you should be able to find the roots algebraically. In general, numerical evaluation of
roots is useful.

Question 4.5. It is undesirable to use a non-invertible model for data analysis. Why? Hint: One
answer to this question involves diagnosing model misspecification.
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2.3 Reducible and irreducible ARMA models

Reducible and irreducible ARMA models

• We have seen the ARMA model written as a ratio of two polynomials,

Yn =
ψ(B)

φ(B)
εn. (21)

• If the two polynomials φ(x) and ψ(x) share a common factor, it can be canceled out without
changing the model.

• The fundamental theorem of algebra says that every polynomial φ(x) = 1− φ1x− · · · − φpxp
of degree p can be written in the form

(1− x/λ1)× (1− x/λ2)× · · · × (1− x/λp), (22)

where λ1:p are the p roots of the polynomial, which may be real or complex valued.

• The Taylor series expansion of φ(B)−1 is convergent if and only if (1−B/λi)−1 has a convergent
expansion for each i ∈ 1 : p. This happens if |λi| > 1 for each i.

• The polynomials φ(x) and ψ(x) share a common factor if, and only if, they share a common root.

• It is not clear, just from looking at the model equations, that

Yn = 5
6Yn−1 −

1
6Yn−2 + εn − εn−1 + 1

4εn−2 (23)

is exactly the same model as

Yn = 1
3Yn−1 + εn − 1

2εn−1. (24)

• To see this, you have to do the math! We see that the second of these equations is derived from
the first by canceling out the common factor (1− 0.5B) in the ARMA model specification.

list(AR_roots=polyroot(c(1,-5/6,1/6)),

MA_roots=polyroot(c(1,-1,1/4)))

$AR_roots

[1] 2+0i 3+0i

$MA_roots

[1] 2+0i 2-0i

3 AR(2) models and oscillating behavior

3.1 The deterministic skeleton of an ARMA model

The deterministic skeleton: Using differential equation to study ARMA models

• Non-random physical processes evolving through time have been modeled using differential equa-
tions ever since the ground-breaking work by Newton (1687).

• We have to attend to the considerable amount of randomness (unpredictability) present in data
and systems we want to study.
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• However, it is helpful to study a related deterministic systems.

• The deterministic skeleton of a time series model is the non-random process obtained by
removing randomness from a stochastic model.

• For a discrete-time model, we can define a continuous-time deterministic skeleton by replacing the
discrete-time difference equation with a differential equation.

• Rather than deriving a deterministic skeleton from a stochastic time series model, we can instead
add stochasticity to a deterministic model to get a model that can explain non-deterministic
phenomena.

3.2 A second order linear differential equation for the AR(2) model

Example: Oscillatory behavior modeled using an AR(2) process

• In physics, a basic model for processes that oscillate (springs, pendulums, vibrating machine parts,
etc) is simple harmonic motion.

• The differential equation for a simple harmonic motion process x(t) is

[M10]
d2

dt2
x(t) = −ω2x(t).

• This is a second order linear differential equation with constant coefficients. Such equations have
a closed form solution. You may already know that the solution to M10 is sinusoidal.

• Finding the solution to a linear differential equation is very similar to the task of solving difference
equations which is useful elsewhere in time series analysis. It also gives a chance to review complex
numbers. Let’s see how it is done.

1. Look for solutions of the form x(t) = eλt. Substituting this into the differential equation [M10] we
get

λ2eλt = −ω2eλt. (25)

2. Canceling the term eλt, we see that this has two solutions, with

λ = ±ωi, where i =
√
−1. (26)

3. The linearity of the differential equation means that if y1(t) and y2(t) are two solutions, then
ay1(t) + by2(t) is also a solution for any a and b. So, the general solution to M10 is

x(t) = aeiωt + be−iωt. (27)

Here, a and b could be complex numbers.

4. We may suspect that x(t) = aeiωt + be−iωt is sinusoidal by recalling the identities

sin(ωt) =
1

2i

(
eiωt − e−iωt

)
, cos(ωt) =

1

2

(
eiωt + e−iωt

)
. (28)

5. For physical systems, x(t) is real so we know that the complex part of (27) is zero. Thus, the two
terms on the right in (27) are complex conjugates. Writing a = (A/2)eiφ, this implies b = (A/2)e−iφ
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for real A and φ. The algebra to show this is not critical for this course, but is a good exercise if you
enjoy it. The factor of 1/2 is arbitrary. This gives

x(t) =
A

2

(
ei(ωt+φ) + e−i(ωt+φ)

)
. (29)

6. Putting together (29) and (28) we get

x(t) = A cos(ωt+ φ), (30)

which explains why the factor of 1/2 in (29) is convenient.

Frequency, amplitude and phase for x(t) = A sin(ωt+ φ)

• ω is called the frequency, and φ is called the phase.

• Angle is usually measured in radians, so the units of ω are radians per unit time, and units of φ
are radians.

• The period is 2π/ω, the time for one cycle.

• A is called the amplitude.

• The frequency of the oscillation is determined by ω in M10, but the amplitude and phase are
unspecified constants which may be determined by initial conditions.

• It may be convenient to rescale to cycles per unit time,

x(t) = A cos
(
2π(ω′t+ φ′)

)
(31)

where ω′ = ω/2π, φ′ = φ/2π.

• A discrete time version of M10 is a deterministic linear difference equation, replacing d2

dt2 by the
second difference operator, ∆2 = (1−B)2. This corresponds to a deterministic model equation,

∆2yn = −ω2yn.

• Adding white noise, and expanding out ∆2 = (1−B)2, we get a stochastic model,

[M11] Yn =
2Yn−1
1 + ω2

− Yn−2
1 + ω2

+ εn.

• Model M11 may be appropriate to describe systems that have semi-regular but somewhat erratic
fluctuations, called quasi-periodic behavior. Such behavior is evident in business cycles or wild
animal populations.

We look at a simulation from M11 with ω = 0.1 and εn ∼ iidN [0, 1]. From our exact solution to the
deterministic skeleton, we expect that a typical period of the oscillations should be 2π/ω ≈ 60.

omega <- 0.1

ar_coefs <- c(2/(1+omega^2), - 1/(1+omega^2))

X <- arima.sim(list(ar=ar_coefs),n=500,sd=1)

par(mfrow=c(1,2))

plot(X)

plot(ARMAacf(ar=ar_coefs,lag.max=500),type="l",ylab="ACF of X")
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• Quasi-periodic fluctuations are phase locked when the random perturbations are not able to
knock the oscillations away from being close to their initial phase.

• Eventually, the randomness should mean that the process is equally likely to have any phase,
regardless of the initial phase.

Question 4.6. What is the timescale on which the simulated model shows phase locked behavior?
Equivalently, on what timescale does the phase of the fluctuations lose memory of its initial phase?

Further reading

• Section 2.2 of Shumway and Stoffer (2017) introduces the backshift operator.

• Section 3.1 develops the theory of ARMA models in a similar way to this chapter.

• Section 3.2 gives a difference equation approach to calculating ARMA autocovariance functions
which gives an opportunity to practice algebra similar to our study of the AR(2) model.
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