
Modeling and Analysis of Time Series Data

Chapter 6: Extending the ARMA model: Seasonality,

integration and trend

Edward L. Ionides

Contents

1 Seasonality 1
1.1 The SARMA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Differencing and integration 4
2.1 The ARIMA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The SARIMA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Trend estimation: regression with ARMA errors 5

1 Seasonality

1.1 The SARMA model

Seasonal autoregressive moving average (SARMA) models

• A general SARMA(p, q)× (P,Q)12 model for monthly data is

[S1] φ(B)Φ(B12)(Yn − µ) = ψ(B)Ψ(B12)εn,

where {εn} is a white noise process and

µ = E[Yn]

φ(x) = 1− φ1x− · · · − φpxp,
ψ(x) = 1 + ψ1x+ · · ·+ ψqx

q,

Φ(x) = 1− Φ1x− · · · − ΦPx
P ,

Ψ(x) = 1 + Ψ1x+ · · ·+ ΨQx
Q.

• SARMA is a special case of ARMA, where the AR and MA polynomials are factored into a
monthly polynomial in B and an annual polynomial (also called seasonal polynomial) in
B12.

• Everything we learned about ARMA models (including assessing causality, invertibility and re-
ducibility) also applies to SARMA.
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Choosing the period for a SARMA model

• For the SARMA(p, q)× (P,Q)12 model, 12 is called the period.

• One could write a SARMA model for some period other than 12.

• A SARMA(p, q)× (P,Q)4 model could be appropriate for quarterly data.

• In principle, a SARMA(p, q) × (P,Q)52 model could be appropriate for weekly data, though in
practice ARMA and SARMA may not work so well for higher frequency data.

• The seasonal period should be appropriate for the system being modeled. It is usually inappropri-
ate to fit a SARMA(p, q) × (P,Q)9 model just because you notice a high sample autocorrelation
at lag 9.

Consider the following two models:

[S2] Yn = 0.5Yn−1 + 0.25Yn−12 + εn,

[S3] Yn = 0.5Yn−1 + 0.25Yn−12 − 0.125Yn−13 + εn,

Question 6.1. Which of [S2] and/or [S3] is a SARMA model?

Question 6.2. Why do we assume a multiplicative structure in the SARMA model, [S1]? What
theoretical and practical advantages (or disadvantages) arise from requiring that an ARMA model for
seasonal behavior has polynomials that can be factored as a product of a monthly polynomial and an
annual polynomial?

Fitting a SARMA model
We fit a monthly version of the Lake Huron depth data described earlier.
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dat <- read.table(file="huron_level.csv",sep=",",header=TRUE)

dat[1:3,1:7]

Year Jan Feb Mar Apr May Jun

1860 177.285 177.339 177.349 177.388 177.425 177.461

1861 177.077 177.105 177.224 177.254 177.382 177.431

1862 177.227 177.181 177.272 177.321 177.397 177.437

huron_level <- as.vector(t(dat[,2:13]))

time <- rep(dat$Year,each=12)+ rep(0:11,nrow(dat))/12

plot(huron_level~time,type="l")

Based on our previous analysis, we try fitting AR(1) for the annual polynomial. We try ARMA(1,1) for
the monthly part, giving

(1− Φ1B
12)(1− φ1B)Yn = (1 + ψ1B)εn. (1)

• As discussed earlier, we analyze data only up to 2014, shown by a red line on the plot.

huron_level <- huron_level[time < 2014.99]

time <- time[time < 2014.99]

huron_sarma11x10 <- arima(huron_level,

order=c(1,0,1),

seasonal=list(order=c(1,0,0),period=12)

)

huron_sarma11x10

Call:
arima(x = huron_level, order = c(1, 0, 1), seasonal = list(order = c(1, 0, 0),

period = 12))

Coefficients:
ar1 ma1 sar1 intercept

0.9649 0.4170 0.5197 176.5727
s.e. 0.0062 0.0198 0.0215 0.0931

sigma^2 estimated as 0.002372: log likelihood = 2977.51, aic = -5945.03

Residual analysis

• Residual analysis is similar to non-seasonal ARMA models.
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• We look for residual correlations at lags corresonding to multiples of the period (here, 12, 24, 36,
...) for misspecified annual dependence.

Question 6.3. What do you conclude from this residual analysis? What would you do next?

2 Differencing and integration

2.1 The ARIMA model

ARMA models for differenced data

• Applying a difference operation to the data can make it look more stationary and therefore more
appropriate for ARMA modeling.

• This can be viewed as a transformation to stationarity

• We can transform the data y∗1:N to z2:N

zn = ∆y∗n = y∗n − y∗n−1. (2)

• Then, an ARMA(p,q) model Z2:N for the differenced data z2:N is called an integrated autore-
gressive moving average model for y∗1:N and is written as ARIMA(p,1,q).

• Formally, the ARIMA(p,d,q) model with intercept µ for Y1:N is

[S4] φ(B)
[
(1−B)dYn − µ

]
= ψ(B) εn,

where {εn} is a white noise process; φ(x) and ψ(x) are ARMA polynomials.

• It is unusual to fit an ARIMA model with d > 1.

• We see that an ARIMA(p,1,q) model is almost a special case of an ARMA(p+1,q) model with a
unit root to the AR(p+1) polynomial.

Question 6.4. Why “almost” not “exactly” in the previous statement?
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Two reasons to fit an ARIMA(p,d,q) model with d > 0
1. You may really think that modeling the differences is a natural approach for your data. The S&P
500 stock market index analysis in Chapter 3 is an example of this, as long as you remember to first
apply a logarithmic transform to the data.
2. Differencing often makes data look “more stationary” and perhaps it will then look stationary enough
to justify applying the ARMA machinery.

• We should be cautious about this second reason. It can lead to poor model specifications and
hence poor forecasts or other conclusions.

• The second reason was more compelling in the 1970s and 1980s. Limited computing power resulted
in limited alternatives, so it was practical to force as many data analyses as possible into the ARMA
framework and use method of moments estimators.

Practical advice on using ARIMA models

• ARIMA analysis is relatively simple to do. It has been a foundational component of time series
analysis since the publication of the influential book “Time Series Analysis” (Box and Jenkins,
1970) which developed and popularized ARIMA modeling.

• A practical approach is:

1. Do a competent ARIMA analysis.

2. Identify potential limitations in this analysis and remedy them using more advanced methods.

3. Assess whether you have in fact learned anything from (2) that goes beyond (1).

2.2 The SARIMA model

The SARIMA(p, d, q)× (P,D,Q) model
Combining integrated ARMA models with seasonality, we can write a general SARIMA(p, d, q) ×
(P,D,Q)12 model for nonstationary monthly data, given by

[S5] φ(B)Φ(B12)
[
(1−B)d(1−B12)DYn − µ

]
= ψ(B)Ψ(B12)εn,

where {εn} is a white noise process, the intercept µ is the mean of the differenced process {(1−B)d(1−
B12)DYn}, and we have ARMA polynomials φ(x), Φ(x), ψ(x), Ψ(x) as in model [S1].

• The SARIMA(0, 1, 1) × (0, 1, 1)12 model has often been used for forecasting monthly time series
in economics and business. It is sometimes called the airline model after a data analysis by Box
and Jenkins (1970).

3 Trend estimation: regression with ARMA errors

Modeling trend with ARMA noise

• A general signal plus noise model is

[S6] Yn = µn + ηn,

where {ηn} is a stationary, mean zero stochastic process, and µn is the mean function.

• If, in addition, {ηn} is uncorrelated, then we have a signal plus white noise model. The usual
linear trend regression model fitted by least squares in Chapter 2 corresponds to a signal plus
white noise model.
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• We can say signal plus colored noise if we wish to emphasize that we’re not assuming white
noise.

• Here, signal and trend are used interchangeably. In other words, we are assuming a deterministic
signal.

• At this point, it is natural for us to consider a signal plus ARMA(p,q) noise model, where {ηn} is
a stationary, causal, invertible ARMA(p,q) process with mean zero.

• As well as the p + q + 1 parameters in the ARMA(p,q) model, there will usually be unknown
parameters in the mean function.

Linear regression with ARMA errors

• When the mean function (also known as the trend) has a linear specification,

µn =

K∑
k=1

Zn,kβk, (3)

the signal plus ARMA noise model is known as linear regression with ARMA errors.

• Writing Y for a column vector of Y1:N , µ for a column vector of µ1:N , η for a column vector of
η1:N , and Z for the N×K matrix with (n, k) entry Zn,k, we have a general linear regression model
with correlated ARMA errors,

Y = Zβ + η. (4)

• From (4), Y − Zβ is ARMA so likelihood evaluation and numerical maximization can build on
ARMA methods.

Inference for the linear regression model with ARMA errors

• Maximum likelihood estimation of θ = (φ1:p, ψ1:q, σ
2, β) is a nonlinear optimization problem.

• Fortunately, arima in R can do it for us.

• As usual, we should look out for signs of numerical problems.

• Data analysis for a linear regression with ARMA errors model, using the framework of likelihood-
based inference, is procedurally similar to fitting an ARMA model.

• This is a powerful technique, since the covariate matrix Z can include other time series. We can
evaluate associations between different time series.

• With appropriate care (since association is not causation) we can draw inferences about mech-
anistic relationships between dynamic processes.

Evidence for systematic trend in Lake Huron level?
We return to annual data, say the January level, to avoid seasonality.
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• Visually, there seems some evidence for a decreasing trend, but there are also considerable fluctu-
ations.

• Let’s test for a trend, using a regression model with Gaussian AR(1) errors. We have previously
found that this is a reasonable model for these data.

• First, for comparison, we fit a null model with no trend.

fit0 <- arima(huron,order=c(1,0,0))

Call:

arima(x = huron, order = c(1, 0, 0))

Coefficients:

ar1 intercept

0.8689 176.4577

s.e. 0.0408 0.1233

sigma^2 estimated as 0.04389: log likelihood = 21.62, aic = -37.25

• We compare fit0 with a linear trend model, coded as fit1.

• The covariate is included via the xreg argument.

fit1 <- arima(huron,order=c(1,0,0),xreg=year)

Call:

arima(x = huron, order = c(1, 0, 0), xreg = year)

Coefficients:

ar1 intercept year

0.8211 186.1652 -0.0050

s.e. 0.0455 3.6923 0.0019

sigma^2 estimated as 0.04244: log likelihood = 24.37, aic = -40.74

Setting up a formal hypothesis test

• To talk formally about these results, we must down a model and some hypotheses.

• Writing the data as y∗1:N , collected at years t1:N , the model we have fitted is

(1− φ1B)(Yn − µ− βtn) = εn, (5)

where {εn} is Gaussian white noise with variance σ2. Our null model is

H〈0〉 : β = 0, (6)

and our alternative hypothesis is
H〈1〉 : β 6= 0. (7)

Question 6.5. How do we test H〈0〉 against H〈1〉?

• Construct two different tests using the R output above.
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• Which test do you think is more accurate, and why?

Question 6.6. How would you check whether your preferred test is indeed better? What other
supplementary analysis could you do to strengthen your conclusions?

Further reading

• Section 3.9 of Shumway and Stoffer (2017) discusses SARIMA modeling.

• Section 3.8 of Shumway and Stoffer (2017) introduces regression with ARMA errors.
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