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1 Stochastic dynamic systems observed with noise

1.1 Latent process models

Latent process models

• Uncertainty and variability are common features biological and social systems. Complex physical
systems can also be unpredictable: we can only forecast weather reliably in the near future.

• Time series models of deterministic trend plus colored noise imply perfect predictability if the
trend function enables extrapolation.

• To model variability and unpredictability in a dynamic system, we can specify a stochastic (i.e.,
random) model for the system.

• Often times, the full dynamic system is unobserved. We have only noisy or incomplete measure-
ments.

• We model measurements as random variables conditional on the trajectory of the latent process.
The latent process is also called a state process or hidden process.
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1.2 The Markov property

The Markov property

• A model for a stochastic dynamic system has the Markov property if the future evolution of
the system depends only on the current state, plus randomness introduced in future.

• A models with the Markov property may be called a Markov chain or a Markov process.

• We use the term Markov process since the term chain is often reserved for situations where either
time or the latent state (or both) take discrete values.

• The Markov property is often used to model the latent process in a time series model.

Notation for discrete time Markov processes

• A time series model X0:N is a Markov process model if the conditional densities satisfy the
Markov property [P1] that

[P1] fXn|X1:n−1
(xn |x1:n−1) = fXn|Xn−1

(xn |xn−1).

for all n ∈ 1 : N

• We may suppose there is an underlying continuous time, t, such that Xn occurs at time tn.

• We write X(t) for the continuous time model, setting Xn = X(tn).

• t1:N are measurement times.

• t0 is the initialization time.

Initial conditions

• We initialize the Markov process model at a time t0, although data are collected only at times
t1:N .

• The initialization model could be deterministic (a fixed value) or a random variable.

• We model X0 = X(t0) as a draw from a probability density function

fX0(x0). (1)

• A fixed initial value is a special case of a density corresponding to a point mass with probability
one at the fixed value.

• A discrete probability mass function is a special case of a density corresponding to a collection of
point masses.

The process model

• The probability density function fXn|Xn−1
(xn |xn−1) is called the one-step transition density

of the Markov process.

• The Markov property asserts that the next step taken by a Markov process follows the one-step
transition density based on the current state, whatever the previous history of the process.

• For a Markov model, the full joint distribution of the latent process is entirely specified by the
one-step transition densities, given the initial value.

• Therefore, we also call fXn|Xn−1
(xn |xn−1) the process model.
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The joint distribution in terms of one-step transition densities
Exercise 10.1. Use [P1] to derive an expression for the joint distribution of a Markov process as a
product of the one-step transition densities. In other words, derive

[P2] fX0:N
(x0:N ) = fX0

(x0)

N∏
n=1

fXn|Xn−1
(xn |xn−1).

Hint: This involves elementary rules for manipulation of joint and conditional densities, together with
application of the Markov property. It is a good exercise to work through by hand to build familiarity
with the model class.
Question 10.1. Explain why a causal Gaussian AR(1) process is a Markov process.

Time-homogeneous transitions and stationarity

• The one step transition density fXn|Xn−1
for a Markov process X0:N can depend on n.

• X0:N is time-homogeneous if fXn|Xn−1
does not depend on n, so there is a conditional density

f(· | ·) such that, for all n ∈ 1 :N ,

fXn|Xn−1
(xn |xn−1) = f(xn |xn−1). (2)

Question 10.2. If X0:N is strict stationary, it is time-homogeneous. Why?

Question 10.3. Time-homogeneity does not necessarily imply stationarity. Find a counter-example.

Partially observed Markov process (POMP) models

• Partial observation may mean either or both of (i) measurement noise; (ii) entirely unmeasured
latent variables.
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• These features are present in many systems.

• A partially observed Markov process (POMP) model is defined by putting together a Markov
latent process model and a measurement model.

• POMP models are a general class, covering many models designed for specific applications.

• Statistical methods for to this general class give us flexibility to develop specific POMP models
appropriate to a range of applications.

1.3 The measurement model

The measurement model

• The measurement process is a collection of random variables Y1:N which models the data y∗1:N .

• Yn is assumed to depend on the latent process only through its value Xn at the time of the
measurement. Formally, this assumption is:

[P3] fYn|X0:N ,Y1:n−1,Yn+1:N
(yn |x0:N , y1:n−1, yn+1:N ) = fYn|Xn

(yn |xn).

• We call fYn|Xn
(yn |xn) the measurement model.

Time-homogeneous measurement models

• In general, the measurement model can depend on n or on any covariate time series.

• The measurement model is time-homogeneous if there is a conditional probability density func-
tion g(· | ·) such that, for all n ∈ 1 : N ,

fYn|Xn
(yn |xn) = g(yn |xn). (3)

• Time-inhomogeneous process and measurement models are sufficiently common that we benefit
from the extra generality of writing fXn|Xn−1

(xn|xn−1) and fYn|Xn
(yn|xn) versus f(xn|xn−1) and

g(yn|xn).

2 Prediction, filtering, smoothing and likelihood

Four basic calculations for working with POMP models
Many time series models in science, engineering and industry can be written as POMP models. A reason
that POMP models form a useful tool for statistical work is that there are convenient recursive formulas
to carry out four basic calculations:

1. Prediction

2. Filtering

3. Smoothing

4. Likelihood calculation
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Prediction

• One-step prediction (also called forecasting) of the latent process at time tn+1 given data up
to time tn involves finding

fXn+1|Y1:n
(xn+1 | y∗1:n). (4)

• We may want to predict more than one time step ahead. However, one-step prediction turns
out to be closely related to computing the likelihood function, and therefore central to statistical
inference.

• Our prediction is a conditional probability density, not a point estimate. In the context of forecast-
ing, this is called a probabilistic forecast. What are the advantages of a probabilistic forecast
over a point forecast? Are there any disadvantages?

Filtering

• The filtering calculation at time tn is to find the conditional distribution of the latent process
Xn given data y∗1:n available at time tn.

• Filtering involves calculating
fXn|Y1:n

(xn | y∗1:n). (5)

• This can be evaluated numerically or algebraically. We will see that Monte Carlo methods can be
a good tool.

• The name “filtering” comes from the history of signal processing. A noisy received signal was
passed through capacitors and resistors to construct a band pass filter estimating the source
signal, just like an optical filter removes unwanted frequencies of light.

Smoothing

• In the context of a POMP model, smoothing involves finding the conditional distribution of Xn

given all the data, y∗1:N .

• So, the smoothing calculation is to find

fXn|Y1:N
(xn | y∗1:N ). (6)

The likelihood

• The likelihood is the joint density of Y1:N evaluated at the data,

fY1:N
(y∗1:N ). (7)

• The model may depend on a parameter vector θ. We can include θ in all the joint and conditional
densities above. Then, the likelihood function is the likelihood viewed as a function of θ. We
write

L(θ) = fY1:N
(y∗1:N ; θ) (8)
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• If we can compute L(θ) then we can perform numerical optimization to get a maximum likelihood
estimate

• Likelihood evaluation and maximization lets us compute profile likelihood confidence intervals,
carry out likelihood ratio tests, and make AIC model comparisons.

2.1 Prediction and filtering recursions

The prediction formula

• One-step prediction of the latent process at time tn given data up to time tn−1 can be computed
recursively in terms of the filtering problem at time tn−1, via the prediction formula for n ∈ 1 :
N ,

[P4] fXn|Y1:n−1
(xn | y∗1:n−1) =∫

fXn−1|Y1:n−1
(xn−1 | y∗1:n−1) fXn|Xn−1

(xn |xn−1) dxn−1.

• For the case n = 1, we let 1 : k is the empty set when k = 0, so that fX0|Y1:0
(x0 | y∗1:0) means

fX0
(x0). In other words, the filter distribution at time t0 is the initial density for the latent

process, since at time t0 we have no data to condition on.

Exercise 10.2. Derive [P4] using the definition of a POMP model with elementary properties of joint
and conditional densities.

Hints for deriving the recursion formulas
Any general identity holding for densities must also hold when we condition everything on a new variable.

Example 1. From
fXY (x, y) = fX(x) fY |X(y |x) (9)

we can condition on Z to obtain

fXY |Z(x, y | z) = fX|Z(x | z) fY |XZ(y |x, z). (10)

Example 2. The prediction formula is a special case of the identity

fX|Y (x | y) =
∫
fXZ|Y (x, z | y) dz. (11)

Example 3. A conditional form of Bayes’ identity is

fX|Y Z(x | y, z) =
fY |XZ(y |x, z) fX|Z(x | z)

fY |Z(y | z)
. (12)

The filtering formula

• Filtering at time tn can be computed by combining the new information in the datapoint y∗n with
the calculation of the one-step prediction of the latent process at time tn given data up to time
tn−1.

• This is carried out via the filtering formula for n ∈ 1 : N ,
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[P5] fXn|Y1:n
(xn | y∗1:n) =

fXn|Y1:n−1
(xn | y∗1:n−1) fYn|Xn

(y∗n |xn)
fYn|Y1:n−1

(y∗n | y∗1:n−1)
.

Exercise 10.3. Derive [P5] using the definition of a POMP model with elementary properties of joint
and conditional densities.

• The prediction and filtering formulas are recursive. If they can be computed for time tn then
they enable the computation at time tn+1.

2.2 Calculating the likelihood

The conditional likelihood formula

• The denominator in the filtering formula [P5] is the conditional likelihood of y∗n given y∗1:n−1.

• It can be computed in terms of the one-step prediction density, via the conditional likelihood
formula,

[P6] fYn|Y1:n−1
(y∗n | y∗1:n−1) =

∫
fXn|Y1:n−1

(xn | y∗1:n−1) fYn|Xn
(y∗n |xn) dxn.

• To make this formula work for n = 1, we take advantage of the convention that 1 : k is the empty
set when k = 0.

Computation of the likelihood and log likelihood

• The likelihood of the entire dataset, y∗1:N can be found from [P6], using the identity

fY1:N
(y∗1:N ) =

N∏
n=1

fYn|Y1:n−1
(y∗n | y∗1:n−1). (13)

• Equation (13) uses the convention that 1 : k is the empty set when k = 0, so the first term in the
product is

fY1|Y1:0
(y∗1 | y∗1:0) = fY1

(y∗1) (14)

• If our model has an unknown parameter θ then (13) gives the log likelihood function as a sum
of conditional log likelihoods,

ℓ(θ) = logL(θ) = log fY1:N
(y∗1:N ; θ) =

N∑
n=1

log fYn|Y1:n−1
(y∗n | y∗1:n−1 ; θ).

2.3 Smoothing

The smoothing recursions

• Smoothing is less fundamental for likelihood-based inference than filtering and one-step prediction.

• Nevertheless, sometimes we want to compute the smoothing density, so we develop some necessary
formulas.

• The filtering and prediction formulas are recursions forward in time: a solution at time tn−1 is
used for the computation at tn.
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• For smoothing, we have backwards smoothing recursion formulas,

[P7] fYn:N |Xn
(y∗n:N |xn) = fYn|Xn

(y∗n |xn)fYn+1:N |Xn
(y∗n+1:N |xn).

[P8] fYn+1:N |Xn
(y∗n+1:N |xn)

=

∫
fYn+1:N |Xn+1

(y∗n+1:N |xn+1) fXn+1|Xn
(xn+1 |xn) dxn+1.

Combining recursions to find the smoothing distribution
The forwards and backwards recursion formulas together allow us to compute the smoothing formula,

[P9] fXn|Y1:N
(xn | y∗1:N ) =

fXn|Y1:n−1
(xn | y∗1:n−1) fYn:N |Xn

(y∗n:N |xn)
fYn:N |Y1:n−1

(y∗n:N | y∗1:n−1)
.

Exercise 10.4. Show how [P7], [P8] and [P9] follow from the basic properties of conditional densities
combined with the Markov property.

Hint: you can write the left hand side of [P9] as fX|Y Z with X = Xn, Y = Y1:n−1, Z = Yn:N .

3 Linear Gaussian POMP models

Linear Gaussian POMP (LG-POMP) models
• Linear Gaussian partially observed Markov process (LG-POMP) models have many applications
across science and engineering.

• Gaussian ARMA models are LG-POMP models. The POMP recursion formulas give a computa-
tionally efficient way to obtain the likelihood of a Gaussian ARMA model.

• Smoothing splines (including the Hodrick-Prescott filter, which is a smoothing spline) can be
written as an LG-POMP model.

• The Basic Structural Model is an LG-POMP used for econometric forecasting. It models a
stochastic trend, seasonality, and measurement error, in a framework with econometrically inter-
pretable parameters. This is more interpretable than fitting SARIMA.

• If an LG-POMP model is appropriate, you avoid Monte Carlo computations used for inference in
general nonlinear POMP models.

The general LG-POMP model
Suppose the latent process, X0:N , and the observation process {Yn}, takes vector values with dimension
dX and dY . A general mean zero LG-POMP model is specified by

• A sequence of dX × dX matrices, A1:N ,

• A sequence of dX × dX covariance matrices, U0:N ,

• A sequence of dY × dX matrices, B1:N

• A sequence of dY × dY covariance matrices, V1:N .

We initialize with X0 ∼ N [0,U0] and then define the entire LG-POMP model by a recursion for n ∈ 1 :
N ,

[LG1] Xn = AnXn−1 + ϵn, ϵn ∼ N [0,Un],

[LG2] Yn = BnXn + ηn, ηn ∼ N [0,Vn].

Often, but not always, we will have a time-homogeneous LG-POMP model, with An = A, Bn = B,
Un = U and Vn = V for n ∈ 1 : N .
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3.1 ARMA models as LG-POMP models

The LG-POMP representation of a Gaussian ARMA

• Let {Yn} be a Gaussian ARMA(p, q) model with noise process ωn ∼ normal[0, σ2], defined by

Yn =

p∑
j=1

ϕjYn−j + ωn +

q∑
k=1

ψkωn−k. (15)

• We look for a time-homogeneous LG-POMP defined by [LG1] and [LG2] where Yn is the first
component of Xn with no measurement error.

• To do this, we define dX = r = max(p, q + 1) and

B = (1, 0, 0, . . . , 0), (16)

V = 0. (17)

• We require A and U such that Yn satisfies equation (15).

We state a solution and see if it works out. Consider

Xn =


Yn
ϕ2Yn−1 + · · ·+ ϕrYn−r+1 + ψ1ωn + · · ·+ ψr−1ωn−r+2

ϕ3Yn−1 + · · ·+ ϕrYn−r+1 + ψ2ωn + · · ·+ ψr−1ωn−r+3

...
ϕrYn−1 + ψr−1ωt


We can check that the ARMA equation (15) matches the matrix equation

Xn = AXn−1 +


1
ψ1

ψ2

...
ψr−1

ωn. where A =



ϕ1 1 0 . . . 0

ϕ2 0 1
. . .

...
...

...
. . .

. . . 0
ϕr−1 0 . . . 0 1
ϕr 0 . . . 0 0


This is a time-homogenous LG-POMP, with A, B and V as above and

U = σ2(1, ψ1, ψ2, . . . , ψr−1)
t
(1, ψ1, ψ2, . . . , ψr−1).

Different POMPs can give the same model for Y1:N

• There are other LG-POMP representations giving rise to the same ARMA model.

• When only one component of a latent process is observed, any model giving rise to the same
observed component is indistinguishable from the data.

• Here, the LG-POMP model has order d2X = r2 = max(p, q + 1)2 parameters. The ARMA model
has order r parameters, so we expect many ways to parameterize the ARMA model as a special
case of the much larger LG-POMP model.

• This unidentifiability can also arise for non-Gaussian POMPs, but it is easier to see in the Gaussian
case.
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3.2 The basic structural model

The basic structural model

• The basic structural model was developed for econometric analysis.

• It decomposes an observable process Y1:N as the sum of a level (Ln), a trend (Tn) describing the
rate of change of the level, and a monthly seasonal component (Sn).

• The model supposes that the level, trend and seasonality are perturbed with Gaussian white noise
at each time point,

[BSM1] Yn = Ln + Sn + ϵn

[BSM2] Ln = Ln−1 + Tn−1 + ξn

[BSM3] Tn = Tn−1 + ζn

[BSM4] Sn = −
∑11

k=1 Sn−k + ηn

where ϵn ∼ normal[0, σ2
ϵ ], ξn ∼ normal[0, σ2

ξ ], ζn ∼ normal[0, σ2
ζ ], and ηn ∼ normal[0, σ2

η].

Two common special cases of the basic structural model

• The local linear trend model is the basic structural model without the seasonal component,
{Sn}

• The local level model is the basic structural model without either the seasonal component, {Sn},
or the trend component, {Tn}. The local level model is therefore a random walk observed with
measurement error.

Initial values for the basic structural model

• To complete the model, we need to specify initial values.

• We have an example of the common problem of failing to specify initial values: these are not
explained in the documentation of the R implementation of the basic structural model, StructTS.
We could go through the source code to find out what it does.

• Incidentally, ?StructTS does give some advice which resonates with our experience earlier in the
course that optimization for ARMA models is often imperfect.

“Optimization of structural models is a lot harder than many of the references admit. For example, the
‘AirPassengers’ data are considered in Brockwell & Davis (1996): their solution appears to be a local
maximum, but nowhere near as good a fit as that produced by ‘StructTS’. It is quite common to find
fits with one or more variances zero, and this can include sigma2eps.”

The basic structural model is an LG-POMP model
[BSM1–4] can be put in matrix form,

Ln

Tn
Sn

Sn−1

Sn−2

...
Sn−10


=



1 1 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 −1 −1 −1 . . . −1
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . 0 1 0





Ln−1

Tn−1

Sn−1

Sn−2

Sn−3

...
Sn−11


+



ξn
ζn
ηn
0
0
...
0
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Now, set

Xn = (Ln, Tn, Sn, Sn−1, Sn−2, . . . , Sn−10)
t
, (18)

Yn = (1, 0, 1, 0, 0, . . . , 0)Xn + ϵn. (19)

We can identify matrices A, B, U and V giving a time-homogeneous LG-POMP representation [LG1,
LG2] for the basic structural model.

3.3 Spline smoothing represented as an LG-POMP

Spline smoothing and its LG-POMP representation

• Spline smoothing is a standard method to smooth scatter plots and time plots. For example,
smooth.spline and hpfilter in R.

• A smoothing spline for an equally spaced time series y∗1:N collected at times t1:N is the sequence
x1:N minimizing the penalized sum of squares (PSS), which is defined as

[SS1] PSS(x1:N ;λ) =

N∑
n=1

(y∗n − xn)
2 + λ

N∑
n=3

(∆2xn)
2.

• The spline is defined for all times, but here we are only concerned with its value at the times t1:N .

• Here, ∆xn = (1−B)xn = xn − xn−1.

• The smoothing parameter, λ, penalizes x1:N to prevent the spline from interpolating the data.

• If λ = 0, the spline will go through each data point, i.e, x1:N will interpolate y∗1:N .

• If λ = ∞, the spline will be the ordinary least squares regression fit,

xn = α+ βn, (20)

since ∆2(α+ βn) = 0.

• Now consider the linear Gaussian model,

[SS2] Xn = 2Xn−1 −Xn−2 + ϵn, ϵn ∼ iid N [0, σ2/λ]

[SS3] Yn = Xn + ηn, ηn ∼ iid N [0, σ2]

• Note that ∆2Xn = ϵn.

• We will show that [SS1] is equivalent to [SS2,SS3].

Constructing a linear Gaussian POMP (LG-POMP) model matching [SS2] and [SS3]
Question 10.4. {Xn, Yn} defined in [SS2] and [SS3] is not quite an LG-POMP model. However, we
can use {Xn} and {Yn} to build an LG-POMP model. How?
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Deriving the penalized spline from the LG-POMP

• The joint density of X1:N and Y1:N in [SS2,SS3] is

fX1:NY1:N
(x1:N , y1:N ) = fX1:N

(x1:N ) fY1:N |X1:N
(y1:N |x1:N ). (21)

Taking logs of (21) we get

log fX1:NY1:N
(x1:N , y1:N ) = log fX1:N

(x1:N ) + log fY1:N |X1:N
(y1:N |x1:N ).

• [SS2,SS3] tell us that {∆2Xn, n ∈ 1 : N} and {Yn−Xn, n ∈ 1 : N} are independent normal[0, σ2/λ]
and normal[0, σ2]. Thus,

log fX1:NY1:N
(x1:N , y1:N ;σ, λ) =

−1

2σ2

N∑
n=1

(yn − xn)
2 +

−λ
2σ2

N∑
n=3

(∆2xn)
2 + C. (22)

• Here, C depends on σ and λ but not on y1:N . C depends on the initial terms x0 and x−1, but we
suppose these can be ignored, for example by modeling them with an improper uniform density.

• Comparing (22) with [SS1], we see that maximizing the density fX1:NY1:N
(x1:N , y

∗
1:N ;σ, λ) as a

function of x1:N is the same problem as finding the smoothing spline by minimizing the penalized
sum of squares.

• For a Gaussian density, the mode (i.e., the maximum of the density) is equal to the expected value.
Therefore, we have

argmin
x1:N

PSS(x1:N ;λ), = argmax
x1:N

fX1:NY1:N
(x1:N , y

∗
1:N ;σ, λ),

= argmax
x1:N

fX1:NY1:N
(x1:N , y

∗
1:N ;σ, λ)

fY1:N
(y∗1:N ;σ, λ)

,

= argmax
x1:N

fX1:N |Y1:N
(x1:N | y∗1:N ;σ, λ),

= E
[
X1:N |Y1:N = y∗1:N ;σ, λ

]
.

• Because a (conditional) normal distribution is characterized by its (conditional) mean and variance,
the smoothing calculation for an LG-POMP model involves finding the conditional mean and
variance of Xn given Y1:N = y∗1:N .

• We conclude that the smoothing problem for this LG-POMP model is the same as the spline
smoothing problem defined by [SS1].

• If you have experience using smoothing splines, this connection may help you transfer that expe-
rience to POMP models.

• Once you have experience with POMP models, this connection helps you understand spline
smoothers that are commonly used in many applications.

• For example, the smoothing parameter λ could be selected by maximum likelihood for the POMP
model.
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Why do we penalize by
∑

n

(
∆2Xn

)2
when smoothing?

Question 10.5. We found that the smoothing spline corresponds to a particular choice of LG-POMP
model given by [SS2, SS3], Why do we choose that penalty, rather that the equivalent penalty from
some other LG-POMP model?

Note: This LG-POMP model is sometimes reasonable, but presumably there are other occasions when
a different LG-POMP model would lead to superior performance.

3.4 The Kalman filter

The Kalman filter

• The Kalman filter is the name given to the prediction, filtering and smoothing formulas [P4–P9]
for the linear Gaussian partially observed Markov process (LG-POMP) model.

• Linear Gaussian models have Gaussian conditional distributions.

• The integrals in the general POMP formulas can be found exactly for the Gaussian distribution,
leading to linear algebra calculations of conditional means and variances.

• The R function arima() uses a Kalman filter to evaluate the likelihood of an ARMA model (or
ARIMA, SARMA, SARIMA).

Review of the multivariate normal distribution

• A random variable X taking values in RdX is multivariate normal with mean µX and variance
ΣX if we can write

X = HZ + µX ,

where Z is a vector of dX independent identically distributed normal[0, 1] random variables and
H is a dX × dX matrix square root of ΣX , i.e.,

HHt
= ΣX .

• A matrix square root of this type exists for any covariance matrix, though the choice of H is not
unique.

• We write X ∼ normal
[
µX ,ΣX

]
. If ΣX is invertible, X has a probability density function,

fX(x) =
1

(2π)dX/2|ΣX |
exp

{
−
(x− µX)

[
ΣX

]−1
(x− µX)

t

2

}
.

Joint multivariate normal vectors
X and Y are joint multivariate normal if the combined vector

Z =

(
X
Y

)
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is multivariate normal. In this case, we write

µZ =

(
µX

µY

)
, ΣZ =

(
ΣX ΣXY

ΣY X ΣY

)
,

where
ΣXY = Cov(X,Y ) = E

[
(X − µX) (Y − µY )

t]
.

• For joint multivariate normal random variables X and Y , we have the useful property that the
conditional distribution of X given Y = y is multivariate normal, with conditional mean and
variance

[KF1] µX|Y (y) = µX +ΣXY Σ−1
Y

(
y − µY

)
,

[KF2] ΣX|Y = ΣX − ΣXY Σ−1
Y ΣY X .

• We write this as
X |Y = y ∼ normal

[
µX|Y (y) , ΣX|Y

]
.

• The joint multivariate normal has a special property that the conditional variance of X given
Y = y does not depend on the value of y. In non-Gaussian situations, it will usually depend on y.

• If ΣY is not invertible, we can interpret Σ−1
Y as a generalized inverse.

Notation for the Kalman filter recursions
We define the conditional means and variances for the filtering, prediction and smoothing distributions:

[KF3] Xn |Y1:n−1 = y1:n−1 ∼ normal
[
µP
n (y1:n−1), Σ

P
n

]
,

[KF4] Xn |Y1:n = y1:n ∼ normal
[
µF
n (y1:n), Σ

F
n

]
,

[KF5] Xn |Y1:N = y1:N ∼ normal
[
µS
n(y1:N ), ΣS

n

]
.

• For data y∗1:N , we call µP
n = µP

n

(
y∗1:n−1

)
= E

[
Xn |Y1:n−1 = y∗1:n−1

]
the prediction mean, and ΣP

n

the prediction variance.

• µF
n = µF

n

(
y∗1:n−1

)
= E

[
Xn |Y1:n = y∗1:n

]
is the filter mean and ΣF

n the filter variance.

• µS
n = µS

n

(
y∗1:N

)
= E

[
Xn |Y1:N = y∗1:N

]
is the smoothed mean and ΣS

n the smoothed variance.

The Kalman matrix recursions

• Applying the properties of linear combinations of Normal random variables, we get the Kalman
filter and prediction recursions:

[KF6] µP
n+1(y1:n) = An+1µ

F
n (y1:n)

[KF7] ΣP
n+1 = An+1Σ

F
nA

t
n+1 + Un+1,

[KF8] ΣF
n =

(
[ΣP

n ]
−1 + Bt

nV−1
n Bn

)−1
,

[KF9] µF
n (y1:n) = µP

n (y1:n−1) + ΣF
nB

t
nV−1

n

{
yn − Bnµ

P
n (y1:n−1)

}
.
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Outline of a derivation of the Kalman matrix recursions

• The prediction recursions [KF6] and [KF7] follow from the property that if X is a d−dimensional
multivariate normal, X ∼ normal(µ,Σ), then AX + b ∼ normal

(
Aµ+ b,AΣAt)

.

• Note that the multivariate normal identities [KF1,KF2] also hold when all variables are conditioned
on some additional joint Gaussian variable, in this case Y1:n−1.

• [KF8] and [KF9] can be deduced by writing out the joint density,

fXnYn|Y1:n−1
(xn, yn | y1:n−1) (23)

and completing the square in the exponent. The conditional density of Xn given Y1:n is propor-
tional to this joint density, with proportionality constant allowing integration to one.

Exercise 10.5. The derivation of the Kalman filter is not central to this course. However, working
through the algebra to your own satisfaction is a good exercise.

• The Kalman filter matrix equations are easy to code, and quick to compute unless the dimension
of the latent space is very large.

• In numerical weather forecasting, with careful programming, they are solved with latent variables
having dimension dX ≈ 107.

• A similar computation gives backward Kalman recursions. Putting the forward and backward
Kalman recursions together, as in [P9], is called Kalman smoothing.

Further reading

• The approach in this chapter is aligned with King et al. (2016)

• Chapter 6 of Shumway and Stoffer (2017) gives an approach emphasizing linear Gaussian state
space models.
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