
Lesson 6:
Case study: Polio

Aaron A. King and Edward L. Ionides

1 / 73

Outline

1 Covariates

2 A POMP model for polio

3 A pomp representation of the POMP model

4 Logistics for the computations

5 Persistence of polio

6 Likelihood maximization

7 Profile likelihood

8 Exercises

2 / 73

Objectives

1 Demonstrate the use of covariates in pomp to add demographic data
(birth rates and total population) and seasonality to an
epidemiological model.

2 Show how partially observed Markov process (POMP) models and
methods can be used to understand transmission dynamics of polio.

3 Practice maximizing the likelihood for such models. How to set up a
global search for a maximum likelihood estimate. How to assess
whether a search has been successful.

4 Provide a workflow that can be adapted to related data analysis tasks.

3 / 73

Covariates

Reviewing covariates in time series analysis

Suppose our time series of primary interest is y1:N .

A covariate time series is an additional time series z1:N which is used
to help explain y1:N .

When we talk about covariates, it is often implicit that we think of
z1:N as a measure of an external forcing to the system producing
y1:N . This means that the process generating the data z1:N affects
the process generating y1:N , but not vice versa.

For example, the weather might affect human health, but human
health has negligible effect on weather: weather is an external forcing
to human health processes.

When the process leading to z1:N is not external to the system
generating it, we must be alert to the possibility of reverse
causation and confounding variables.

4 / 73

Covariates

Including covariates in the general POMP framework

The general POMP modeling framework allows essentially arbitrary
modeling of covariates.

Recall that a POMP model is specified by defining, for n = 1 : N ,

fX0(x0 ; θ),
fXn|Xn−1

(xn |xn−1 ; θ),

fYn|Xn
(yn |xn ; θ).

The possibility of a general dependence on n includes the possibility
that there is some covariate time series z0:N such that

fX0(x0 ; θ) = fX0(x0 ; θ, z0)
fXn|Xn−1

(xn |xn−1 ; θ) = fXn|Xn−1
(xn |xn−1 ; θ, zn),

fYn|Xn
(yn |xn ; θ) = fYn|Xn

(yn |xn ; θ, zn).

5 / 73

Covariates

Seasonality in a POMP model

One specific choice of covariates is to construct z0:N so that it
fluctuates periodically, once per year. This allows seasonality enter
the POMP model in whatever way is appropriate for the system under
investigation.

All that remains is to hypothesize what is a reasonable way to include
covariates for your system, and to fit the resulting model.

Now we can evaluate and maximize the log-likelihood, we can
construct AIC or likelihood ratio tests to see if the covariate helps
describe the data.

This also lets us compare alternative ways the covariates might enter
the process model and/or the measurement model.

6 / 73

Covariates

Covariates in the pomp package

pomp provides facilities for including covariates in a pomp object.

Named covariate time series entered via the covar argument to pomp

are automatically defined within C snippets used for the rprocess,
dprocess, rmeasure, dmeasure and rinit arguments.

We see this in practice in the following epidemiological model, which
has population census, birth data and seasonality as covariates.

7 / 73

A POMP model for polio

Polio in Wisconsin

The massive global polio eradication initiative (GPEI) has brought
polio from a major global disease to the brink of extinction.

Finishing this task is proving hard, and improved understanding polio
ecology might assist.

Martinez-Bakker et al. (2015) investigated this using extensive state
level pre-vaccination era data in USA.

We will follow the approach of Martinez-Bakker et al. (2015) for one
state (Wisconsin). In the context of their model, we can quantify
seasonality of transmission, the role of the birth rate in explaining the
transmission dynamics, and the persistence mechanism of polio.

8 / 73

A POMP model for polio

Martinez-Bakker et al. (2015) carried out this analysis for all 48
contiguous states and District of Columbia, and their data and code
are publicly available. The data we study, in polio wisconsin.csv,
consist of cases, the monthly reported polio cases; births, the
monthly recorded births; pop, the annual census; time, date in years.

library(tidyverse)

data <- read_csv(

"https://kingaa.github.io/sbied/polio/polio_wisconsin.csv",

comment="#")

head(data,5)

A tibble: 5 x 4

time cases births pop

<dbl> <dbl> <dbl> <dbl>

1 1931. 7 4698 2990000

2 1931. 0 4354 2990000

3 1931. 7 4836 2990000

4 1931. 3 4468 2990000

5 1931. 4 4712 2990000
9 / 73

A POMP model for polio

10 / 73

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

A POMP model for polio

We use the compartment model of Martinez-Bakker et al. (2015).

Compartments representing susceptible babies in each of six
one-month birth cohorts (SB

1 ,...,SB
6), susceptible older individuals

(SO), infected babies (IB), infected older individuals (IO), and
recovered with lifelong immunity (R).

The state vector of the disease transmission model consists of
numbers of individuals in each compartment at each time,

X(t) =
(
SB
1 (t), ..., SB

6 (t), IB(t), IO(t), R(t)
)
.

Babies under six months are modeled as fully protected from
symptomatic poliomyelitis.

Older infections lead to reported cases (usually paralysis) at a rate ρ.

The flows through the compartments are graphically represented on
the following slide (Figure 1A of Martinez-Bakker et al. (2015)):

11 / 73

A POMP model for polio

SBk, susceptible babies k months
IB, infected babies
SO, susceptible older people
IO, infected older people

12 / 73

A POMP model for polio

Setting up the model

Duration of infection is comparable to the one-month reporting
aggregation, so a discrete time model may be appropriate.
Martinez-Bakker et al. (2015) fitted monthly reported cases, May
1932 through January 1953, so we set tn = 1932 + (4 + n)/12 and

Xn = X(tn) =
(
SB
1,n, ..., S

B
6,n, I

B
n , I

O
n , Rn

)
.

The mean force of infection, in units of yr−1, is modeled as

λ̄n =

(
βn
IOn + IBn
Pn

+ ψ

)
where Pn is census population interpolated to time tn and seasonality
of transmission is modeled as

βn = exp

{
K∑
k=1

bkξk(tn)

}
,

with {ξk(t), k = 1, . . . ,K} a periodic B-spline basis with K = 6.
Pn and ξk(tn) are covariate time series.

13 / 73

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

A POMP model for polio

The force of infection has a stochastic perturbation,

λn = λ̄nεn,

where εn is a Gamma random variable with mean 1 and variance
σ2env + σ2dem

/
λ̄n. These two terms capture variation on the

environmental and demographic scales, respectively. All
compartments suffer a mortality rate, set at δ = 1/60yr−1.

Within each month, all susceptible individuals are modeled as having
exposure to constant competing hazards of mortality and polio
infection. The chance of remaining in the susceptible population
when exposed to these hazards for one month is therefore

pn = exp
{
− (δ + λn)/12

}
,

with the chance of polio infection being

qn = (1− pn)λn
/

(λn + δ).

14 / 73

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

A POMP model for polio

We employ a continuous population model, with no demographic
stochasticity. Writing Bn for births in month n, we obtain the
dynamic model of Martinez-Bakker et al. (2015):

SB
1,n+1 = Bn+1

SB
k,n+1 = pnS

B
k−1,n for k = 2, . . . , 6

SO
n+1 = pn(SO

n + SB
6,n)

IBn+1 = qn
∑6

k=1 S
B
k,n

IOn+1 = qnS
O
n

15 / 73

A POMP model for polio

The measurement model

The model for the reported observations, conditional on the state, is a
discretized normal distribution truncated at zero, with both
environmental and Poisson-scale contributions to the variance:

Yn = max{round(Zn), 0}, Zn ∼ normal
(
ρIOn ,

(
τIOn

)2
+ ρIOn

)
.

16 / 73

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

A POMP model for polio

Initial conditions

Additional parameters are used to specify initial state values at time
t0 = 1932 + 4/12.
We will suppose there are parameters

(
S̃B
1,0, ..., S̃

B
6,0, Ĩ

B
0 , Ĩ

O
0 , S̃

O
0

)
that

specify the population in each compartment at time t0 via

SB
1,0 = S̃B

1,0, ..., S
B
6,0 = S̃B

6,0, IB0 = P0Ĩ
B
0 , SO

0 = P0S̃
O
0 , IO0 = P0Ĩ

O
0 .

Following Martinez-Bakker et al. (2015), we make an approximation
for the initial conditions of ignoring infant infections at time t0. Thus,
we set ĨB0 = 0 and use monthly births in the preceding months
(ignoring infant mortality) to fix S̃B

k,0 = B1−k for k = 1, . . . , 6.

Estimated initial conditions are specified by ĨO0 and S̃O
0 , since the

initial recovered population, R0, is obtained by subtracting all other
compartments from the total initial population, P0.
It is convenient to parameterize the estimated initial states as
fractions of the population, whereas the initial states fixed at births
are parameterized directly as a count.

17 / 73

randall-stat-ionides

randall-stat-ionides

A pomp representation of the POMP model

Building a pomp object for the polio model

We code the state variables, and the choice of t0, as

statenames <- c("SB1","SB2","SB3","SB4","SB5","SB6",

"IB","SO","IO")

t0 <- 1932+4/12

We do not explicitly code R, since it is defined implicitly as the total
population minus the sum of the other compartments. Due to lifelong
immunity, individuals in R play no role in the dynamics. Even
occasional negative values of R (due to a discrepancy between the
census and the mortality model) would not be a fatal flaw.

18 / 73

A pomp representation of the POMP model

Setting up the covariate table

time gives the time at which the covariates are defined.
P is a smoothed interpolation of the annual census.
B is monthly births.
xi1,...,xi6 is a periodic B-spline basis

library(pomp)

K <- 6

covar <- covariate_table(

t=data$time,

B=data$births,

P=predict(

smooth.spline(x=1931:1954,y=data$pop[seq(12,24*12,by=12)]),

x=data$time)$y,

periodic_bspline_basis(t,nbasis=K,

degree=3,period=1,names="xi%d"),

times="t"

)

19 / 73

A pomp representation of the POMP model

Regular parameters and initial value parameters

The parameters b1, . . . , bK, ψ, ρ, τ, σdem, σenv in the model above are
regular parameters (RPs), coded as

rp_names <- c("b1","b2","b3","b4","b5","b6",

"psi","rho","tau","sigma_dem","sigma_env")

The initial value parameters (IVPs), ĨO0 and S̃O
0 , are coded for each

state named by adding 0 to the state name:

ivp_names <- c("SO_0","IO_0")

paramnames <- c(rp_names,ivp_names)

20 / 73

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

A pomp representation of the POMP model

Fixed parameters (FPs)

Two quantities in the dynamic model specification, δ = 1/60yr−1 and
K = 6, are not estimated.

Six other initial value quantities, {S̃B
1,0, . . . , S̃

B
6,0}, are treated as fixed.

Fixed quantities could be coded as constants using the globals

argument of pomp, but here we pass them as fixed parameters (FPs).

fp_names <- c("delta","K",

"SB1_0","SB2_0","SB3_0","SB4_0","SB5_0","SB6_0")

paramnames <- c(rp_names,ivp_names,fp_names)

covar_index_t0 <- which(abs(covar@times-t0)<0.01)

initial_births <- covar@table["B",covar_index_t0-0:5]

names(initial_births) <- c("SB1_0","SB2_0",

"SB3_0","SB4_0","SB5_0","SB6_0")

fixed_params <- c(delta=1/60,K=K,initial_births)

21 / 73

randall-stat-ionides

A pomp representation of the POMP model

A starting value for the parameters

We have to start somewhere for our search in parameter space.

The following parameter vector is based on informal model
exploration and prior research:

params_guess <- c(

b1=3,b2=0,b3=1.5,b4=6,b5=5,b6=3,

psi=0.002,rho=0.01,tau=0.001,

sigma_dem=0.04,sigma_env=0.5,

SO_0=0.12,IO_0=0.001,

fixed_params)

22 / 73

A pomp representation of the POMP model

rprocess <- Csnippet("

double beta = exp(dot_product((int) K, &xi1, &b1));

double lambda = (beta * (IO+IB) / P + psi);

double var_epsilon = pow(sigma_dem,2)/ lambda +

pow(sigma_env,2);

lambda *= (var_epsilon < 1.0e-6) ? 1 :

rgamma(1/var_epsilon,var_epsilon);

double p = exp(-(delta+lambda)/12);

double q = (1-p)*lambda/(delta+lambda);

SB1=B;

SB2=SB1*p;

SB3=SB2*p;

SB4=SB3*p;

SB5=SB4*p;

SB6=SB5*p;

SO=(SB6+SO)*p;

IB=(SB1+SB2+SB3+SB4+SB5+SB6)*q;

IO=SO*q;

")

23 / 73

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

A pomp representation of the POMP model

dmeasure <- Csnippet("

double tol = 1.0e-25;

double mean_cases = rho*IO;

double sd_cases = sqrt(pow(tau*IO,2) + mean_cases);

if(cases > 0.0){
lik = pnorm(cases+0.5,mean_cases,sd_cases,1,0)

- pnorm(cases-0.5,mean_cases,sd_cases,1,0) + tol;

} else{
lik = pnorm(cases+0.5,mean_cases,sd_cases,1,0) + tol;

}
if (give_log) lik = log(lik);")

rmeasure <- Csnippet("

cases = rnorm(rho*IO, sqrt(pow(tau*IO,2) + rho*IO));

if (cases > 0.0) {
cases = nearbyint(cases);

} else {
cases = 0.0;

}")

24 / 73

A pomp representation of the POMP model

The map from the initial value parameters to the initial value of the states
at time t0 is coded by the rinit function:

rinit <- Csnippet("

SB1 = SB1_0;

SB2 = SB2_0;

SB3 = SB3_0;

SB4 = SB4_0;

SB5 = SB5_0;

SB6 = SB6_0;

IB = 0;

IO = IO_0 * P;

SO = SO_0 * P;

")

25 / 73

A pomp representation of the POMP model

Parameter transformations

For parameter estimation, it is helpful to have transformations that
map each parameter into the whole real line and which put
uncertainty close to a unit scale

partrans <- parameter_trans(

log=c("psi","rho","tau","sigma_dem","sigma_env"),

logit=c("SO_0","IO_0")

)

Since the seasonal splines are exponentiated, the beta parameters are
already defined on the real line with unit scale uncertainty.

26 / 73

A pomp representation of the POMP model

We now put these pieces together into a pomp object.

data |>

filter(

time > t0 + 0.01,

time < 1953+1/12+0.01

) |>

select(cases,time) |>

pomp(

times="time",t0=t0,

params=params_guess,

rprocess=euler(step.fun=rprocess,delta.t=1/12),

rmeasure=rmeasure,

dmeasure=dmeasure,

rinit=rinit,

partrans=partrans,

covar=covar,

statenames=statenames,

paramnames=paramnames

) -> polio

27 / 73

Logistics for the computations Controlling run time

Setting run levels to control computation time

run level=1 will set all the algorithmic parameters to the first
column of values in the following code, for debugging.

Here, Np is the number of particles, Nmif is the number of iterations
of the optimization procedure carried, other variables are defined for
use later.

run level=2 uses enough effort to gives reasonably stable results at
a moderate computational time.

Larger values give more refined computations, implemented here by
run level=3 which was run on a computing cluster.

28 / 73

Logistics for the computations Controlling run time

Setting run levels to control computation time II

run_level <- 3

Np <- switch(run_level,100, 1e3, 5e3)

Nmif <- switch(run_level, 10, 100, 200)

Nreps_eval <- switch(run_level, 2, 10, 20)

Nreps_local <- switch(run_level, 10, 20, 40)

Nreps_global <-switch(run_level, 10, 20, 100)

Nsim <- switch(run_level, 50, 100, 500)

29 / 73

Logistics for the computations Controlling run time

Comments on setting algorithmic parameters

Using run level settings is convenient for editing source code. It
plays no fundamental role in the final results. If you are not editing
the source code, or using the code as a template for developing your
own analysis, it has no function.
When you edit a document with different run level options, you can
debug your code by editing run level=1. Then, you can get
preliminary assessment of whether your results are sensible with
run level=2 and get finalized results, with reduced Monte Carlo
error, by editing run level=3.
We intend run level=1 to run in minutes, run level=2 to run in
tens of minutes, and run level=3 to run in hours.
You can increase or decrease the numbers of particles, or the number
of mif2 iterations, or the number of global searches carried out, to
make sure this procedure is practical on your machine.
Appropriate values of the algorithmic parameters for each run-level
are context dependent.

30 / 73

Logistics for the computations Controlling run time

Exercise 6.1. Choosing algorithmic parameters

Suppose you have selected a number of particles, Np, and number of
iterated filtering iterations, Nmif, and number of Monte Carlo replications,
Reps, that give a 10 minute maximization search using mif2(). Propose
how you would adjust these to plan a more intensive search lasting about
2 hours.

Worked solution to the Exercise

31 / 73

algorithmic-parameters-exercise.html

Logistics for the computations Controlling run time

Setting up parallelization

We will use doFuture to parallelize our computations. At run-levels 1 and
2, it will be sufficient to use the multiple cores on a single machine, but at
run-level 3, we will use an HPC cluster. In the following, we use our own
HPC cluster. To run these codes on your own HPC cluster, you would
need to edit the CLUSTER.R script suitably.

library(doFuture)

library(iterators)

par_init <- function (run_level) {
if (run_level >= 3 && file.exists("CLUSTER.R")) {
source("CLUSTER.R")

} else {
plan(multisession)

}
}

32 / 73

Logistics for the computations Parallel computation of the likelihood

Likelihood evaluation at the starting parameter estimate

stew(file="pf1.rda",seed=3899882,{
par_init(run_level)

pf1 <- foreach(i=1:20,.combine=c,

.options.future=list(seed=TRUE)

) %dofuture% pfilter(polio,Np=Np)

cores <- nbrOfWorkers()

})
L1 <- logmeanexp(sapply(pf1,logLik),se=TRUE)

In 56.9 seconds (with 250 cores) we obtain a log-likelihood estimate
of -819.70 with a Monte Carlo standard error of 0.32.

Here, we use stew() to cache the results of the computation.

33 / 73

Logistics for the computations Caching results

Caching computations in Rmarkdown

It is not unusual for computations in a POMP analysis to take hours
to run on many cores.

The computations for a final version of a manuscript may take days.

Usually, we use some mechanism like the different values of
run level so that preliminary versions of the manuscript take less
time to run.

However, when editing the text or working on a different part of the
manuscript, we don’t want to re-run long pieces of code.

Saving results so that the code is only re-run when necessary is called
caching.

34 / 73

Logistics for the computations Caching results

You may already be familiar the versions of caching provided in .Rmd
and .Rnw files. The argument cache=TRUE can be set individually for
each chunk or as a global option.

When cache=TRUE, Rmarkdown/knitr caches the results of the
chunk, meaning that a chunk will only be re-run if code in that chunk
is edited.

You can force Rmarkdown/knitr to recompute all the chunks by
deleting the cache subdirectory.

35 / 73

Logistics for the computations Caching results

Practical advice for caching

What if changes elsewhere in the document affect the proper
evaluation of your chunk, but you didn’t edit any of the code in the
chunk itself? Rmarkdown/knitr will get this wrong. It will not
recompute the chunk.

A perfect caching system doesn’t exist. Always delete the entire
cache and rebuild a fresh cache before finishing a manuscript.

Rmarkdown/knitr caching is good for relatively small computations,
such as producing figures or things that may take a minute or two
and are annoying if you have to recompute them every time you make
any edits to the text.

For longer computations, it is good to have full manual control. In
pomp, this is provided by two related functions, stew and bake.

36 / 73

Logistics for the computations Caching results

stew and bake

Notice the function stew in the replicated particle filter code above.

Here, stew looks for a file called pf1.rda.

If it finds this file, it simply loads the contents of this file.

If the file doesn’t exist, it carries out the specified computation and
saves it in a file of this name.

bake is similar to stew. The difference is that bake uses readRDS

and saveRDS, whereas stew uses load and save.

either way, the computation will not be re-run unless you edit the
code, change something on which the computation depends, or
manually delete the archive file (pf1.rda).

stew and bake reset the seed appropriately whether or not the
computation is recomputed. Otherwise, caching risks adverse
consequences for reproducibility.

37 / 73

Persistence of polio

Simulation to investigate local persistence

The scientific purpose of fitting a model typically involves analyzing
properties of the fitted model, often investigated using simulation.

Following Martinez-Bakker et al. (2015), we are interested in how
often months with no reported cases (Yn = 0) correspond to months
without any local asymptomatic cases, defined for our continuous
state model as IBn + IOn < 1/2.

For Wisconsin, using our model at the estimated MLE, we simulate in
parallel as follows:

simulate(polio,nsim=Nsim,seed=1643079359,

format="data.frame",include.data=TRUE) -> sims

38 / 73

Persistence of polio

For the data, there were 26 months with no reported cases, similar to the
mean of 51.7 for simulations from the fitted model. Months with no
asymptomatic infections for the simulations were rare, on average 0.80
months per simulation. Months with fewer than 100 infections averaged
65 per simulation, which in the context of a reporting rate of 0.01000 can
explain the absences of case reports. The mean monthly infections due to
importations, modeled by ψ, is 120. This does not give much opportunity
for local elimination of poliovirus.

39 / 73

Persistence of polio

It is also good practice to look at simulations from the fitted model:

mle_simulation <- simulate(polio,seed=902683441)

plot(mle_simulation)

40 / 73

Persistence of polio

We see from this simulation that the fitted model can generate report
histories that look qualitatively similar to the data. However, there are
things to notice in the reconstructed latent states. Specifically, the
pool of older susceptibles, SO(t), is mostly increasing. The reduced
case burden in the data in the time interval 1932–1945 is explained by
a large initial recovered (R) population, which implies much higher
levels of polio before 1932. There were large epidemics of polio in the
USA early in the 20th century, so this is not implausible.

A likelihood profile over the parameter S̃O
0 could help to clarify to

what extent this is a critical feature of how the model explains the
data.

41 / 73

Likelihood maximization

Local likelihood maximization

Let’s see if we can improve on the previous MLE. We use the IF2
algorithm. We set a constant random walk standard deviation for
each of the regular parameters and a larger constant for each of the
initial value parameters:

mif.rw.sd <- eval(substitute(rw_sd(

b1=rwr,b2=rwr,b3=rwr,b4=rwr,b5=rwr,b6=rwr,

psi=rwr,rho=rwr,tau=rwr,sigma_dem=rwr,

sigma_env=rwr,

IO_0=ivp(rwi),SO_0=ivp(rwi)),

list(rwi=0.2,rwr=0.02)))

42 / 73

Likelihood maximization

stew(file="mif.rda",seed=942098028,{
par_init(run_level)

m2 <- foreach(

i=1:Nreps_local,.combine=c,

.options.future=list(seed=TRUE)

) %dofuture%

mif2(polio, Np=Np, Nmif=Nmif, rw.sd=mif.rw.sd,

cooling.fraction.50=0.5)

lik_m2 <- foreach(

m=m2,.combine=rbind,

.options.future=list(seed=TRUE)

) %dofuture%

logmeanexp(replicate(Nreps_eval,

logLik(pfilter(m,Np=Np))),se=TRUE)

})

43 / 73

Likelihood maximization

coef(m2) |> melt() |> spread(name,value) |>

select(-.id) |>

bind_cols(logLik=lik_m2[,1],logLik_se=lik_m2[,2]) -> r2

r2 |> arrange(-logLik) |>

write_csv("params.csv")

summary(r2$logLik,digits=5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-797.1 -796.0 -795.5 -795.6 -795.2 -794.9

This investigation took 14.5 min.

These repeated stochastic maximizations can also show us the
geometry of the likelihood surface in a neighborhood of this point
estimate:

44 / 73

Likelihood maximization

pairs(~logLik+psi+rho+tau+sigma_dem+sigma_env,

data=subset(r2,logLik>max(logLik)-20),pch=16)

45 / 73

Likelihood maximization

We see strong tradeoffs between ψ, ρ and σdem. By itself, in the
absence of other assumptions, the pathogen immigration rate ψ is
fairly weakly identified. However, the reporting rate ρ is essentially
the fraction of poliovirus infections leading to acute flaccid paralysis,
which is known to be around 1%. This plot suggests that fixing an
assumed value of ρ might lead to much more precise inference on ψ;
the rate of pathogen immigration presumably being important for
understanding disease persistence. These hypotheses could be
investigated more formally by construction of profile likelihood plots
and likelihood ratio tests.

46 / 73

Likelihood maximization

Global likelihood maximization

Practical parameter estimation involves trying many starting values
for the parameters. One can specify a large box in parameter space
that contains all sensible parameter vectors.

If the estimation gives stable conclusions with starting values drawn
randomly from this box, we have some confidence that our global
search is reliable.

For our polio model, a reasonable box might be:

box <- rbind(

b1=c(-2,8), b2=c(-2,8),

b3=c(-2,8), b4=c(-2,8),

b5=c(-2,8), b6=c(-2,8),

psi=c(0,0.1), rho=c(0,0.1), tau=c(0,0.1),

sigma_dem=c(0,0.5), sigma_env=c(0,1),

SO_0=c(0,1), IO_0=c(0,0.01)

)

47 / 73

Likelihood maximization

We then carry out a search identical to the local one except for the
starting parameter values. This can be succinctly coded by calling mif2 on
the previously constructed object, m2[[1]], with a reset starting value:

bake(file="box_eval1.rds",seed=833102018,{
par_init(run_level)

foreach(i=1:Nreps_global,.combine=c,

.options.future=list(seed=TRUE)) %dofuture%

mif2(m2[[1]],params=c(fixed_params,

apply(box,1,function(x)runif(1,x[1],x[2]))))

}) -> m3

bake(file="box_eval2.rds",seed=71449038,{
par_init(run_level)

foreach(m=m3,.combine=rbind,

.options.future=list(seed=TRUE)) %dofuture%

logmeanexp(replicate(Nreps_eval,

logLik(pfilter(m,Np=Np))),se=TRUE)

}) -> lik_m3

48 / 73

Likelihood maximization

coef(m3) |> melt() |> spread(name,value) |>

select(-.id) |>

bind_cols(logLik=lik_m3[,1],logLik_se=lik_m3[,2]) -> r3

read_csv("params.csv") |>

bind_rows(r3) |>

arrange(-logLik) |>

write_csv("params.csv")

summary(r3$logLik,digits=5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-913.6 -796.4 -795.7 -799.4 -795.3 -794.7

Evaluation of the best result of this search gives a likelihood of -794.7
with a standard error of 0.1. We see that optimization attempts from
diverse remote starting points can approach our MLE, but do not
exceed it. This gives us some reasonable confidence in our MLE.

Plotting these diverse parameter estimates can help to give a feel for
the global geometry of the likelihood surface

49 / 73

Likelihood maximization

pairs(~logLik+psi+rho+tau+sigma_dem+sigma_env,

data=subset(r3,logLik>max(logLik)-20),pch=16)

50 / 73

Likelihood maximization

Benchmark likelihoods for non-mechanistic models

To understand these global searches, many of which may correspond
to parameter values having no meaningful scientific interpretation, it
is helpful to put the log-likelihoods in the context of some
non-mechanistic benchmarks.
The most basic statistical model for data is independent, identically
distributed (IID). Picking a negative binomial model,

nb_lik <- function (theta) {
-sum(dnbinom(as.numeric(obs(polio)),

size=exp(theta[1]),prob=exp(theta[2]),log=TRUE))}
nb_mle <- optim(c(0,-5),nb_lik)

-nb_mle$value

[1] -1036.227

A model with likelihood below -1036.2 is unreasonable. This explains
a cutoff around this value in the global searches: in these cases, the
model is finding essentially IID explanations for the data. 51 / 73

Likelihood maximization

ARMA models as benchmarks

Linear, Gaussian auto-regressive moving-average (ARMA) models
provide non-mechanistic fits to the data including flexible dependence
relationships.

We fit to log(y∗n + 1) and correct the likelihood back to the scale
appropriate for the untransformed data:

log_y <- log(as.vector(obs(polio))+1)

arma_fit <- arima(log_y,order=c(2,0,2),

seasonal=list(order=c(1,0,1),period=12))

arma_fit$loglik-sum(log_y)

[1] -822.0827

This 7-parameter model, which knows nothing of susceptible
depletion, attains a likelihood of -822.1.

The aim of mechanistic modeling here is not to beat non-mechanistic
models, but it is comforting that we’re competitive with them.

52 / 73

Likelihood maximization

Mining previous investigations of the likelihood

params <- read_csv("params.csv")

pairs(~logLik+psi+rho+tau+sigma_dem+sigma_env,

data=subset(params,logLik>max(logLik)-20),pch=16)

53 / 73

Likelihood maximization

Here, we see that the most successful searches have always led to
models with reporting rate around 1-2%. This impression can be
reinforced by looking at results from the global searches:

plot(logLik~rho,data=subset(r3,logLik>max(r3$logLik)-10),log="x")

Reporting rates close to 1% provide a small but clear advantage
(several units of log-likelihood) in explaining the data. For these
reporting rates, depletion of susceptibles can help to explain the
dynamics.

54 / 73

Profile likelihood

Profile likelihood

First, we must decide the ranges of parameter starting values for the
searches.

We build a search box using the range of finishing values from
previous searches.

library(tidyverse)

params |>

filter(logLik>max(logLik)-20) |>

select(-logLik,-logLik_se) |>

gather(variable,value) |>

group_by(variable) |>

summarize(min=min(value),max=max(value)) |>

ungroup() |>

column_to_rownames(var="variable") |>

t() -> box

55 / 73

Profile likelihood

We must decide how many points to plot along the profile, and the
number of Monte Carlo replicates at each point.

profile_pts <- switch(run_level, 3, 5, 30)

profile_Nreps <- switch(run_level, 2, 3, 10)

We build a dataframe with a row setting up each profile search

idx <- which(colnames(box)!="rho")

profile_design(

rho=seq(0.01,0.025,length=profile_pts),

lower=box["min",idx],upper=box["max",idx],

nprof=profile_Nreps

) -> starts

56 / 73

Profile likelihood

Note that ρ is not perturbed in the IF iterations for the purposes of
the profile calculation.

profile.rw.sd <- eval(substitute(rw_sd(

rho=0,b1=rwr,b2=rwr,b3=rwr,b4=rwr,b5=rwr,b6=rwr,

psi=rwr,tau=rwr,sigma_dem=rwr,sigma_env=rwr,

IO_0=ivp(rwi),SO_0=ivp(rwi)),

list(rwi=0.2,rwr=0.02)))

Otherwise, the following code to compute the profile is identical to a
global search . . .

It took 32.5 minutes to run on 250 cores.

57 / 73

Profile likelihood

stew(file="profile_rho.rda",seed=1888257101,{
par_init(run_level)

foreach(start=iter(starts,"row"),.combine=rbind,

.options.future=list(seed=TRUE)) %dofuture% {
polio |> mif2(params=start,

Np=Np,Nmif=ceiling(Nmif/2),

cooling.fraction.50=0.5,

rw.sd=profile.rw.sd

) |>

mif2(Np=Np,Nmif=ceiling(Nmif/2),

cooling.fraction.50=0.1

) -> mf

replicate(Nreps_eval,

mf |> pfilter(Np=Np) |> logLik()

) |> logmeanexp(se=TRUE) -> ll

mf |> coef() |> bind_rows() |>

bind_cols(logLik=ll[1],logLik_se=ll[2])

} -> m4

cores <- nbrOfWorkers()

})
58 / 73

Profile likelihood

59 / 73

Exercises

Exercise 6.2. Initial values

.
When carrying out parameter estimation for dynamic systems, we need to
specify beginning values for both the dynamic system (in the state space)
and the parameters (in the parameter space). By convention, we use
initial values for the initialization of the dynamic system and starting
values for initialization of the parameter search.
Discuss issues in specifying and inferring initial conditions, with particular
reference to this polio example.
Suggest a possible improvement in the treatment of initial conditions here,
code it up and make some preliminary assessment of its effectiveness. How
will you decide if it is a substantial improvement?

Worked solution to the Exercise

60 / 73

initial-values-exercise.html

Exercises

Exercise 6.3. Parameter estimation using randomized
starting values

Think about possible improvements on the assignment of randomized
starting values for the parameter estimation searches. Propose and try out
a modification of the procedure. Does it make a difference?

Worked solution to the Exercise

61 / 73

starting-values-exercise.html

Exercises

Exercise 6.4. Demography and discrete time

It can be surprisingly hard to include birth, death, immigration, emigration
and aging into a disease model in satisfactory ways. Consider the strengths
and weaknesses of the analysis presented, and list changes to the model
that might be improvements.
In an imperfect world, it is nice to check the extent to which the
conclusions are insensitive to alternative modeling decisions. These are
testable hypotheses, which can be addressed within a plug-and-play
inference framework. Identify what would have to be done to investigate
the changes you have proposed. Optionally, you could have a go at coding
something up to see if it makes a difference.

Worked solution to the Exercise

62 / 73

demography-exercise.html

Exercises

Exercise 6.5. Diagnosing filtering and maximization
convergence

Are there outliers in the data (i.e., observations that do not fit well with
our model)? Are we using unnecessarily large amounts of computer time
to get our results? Are there indications that we would should run our
computations for longer? Or maybe with different choices of algorithmic
settings? In particular, cooling.fraction.50 gives the fraction by which
the random walk standard deviation is decreased (”cooled”) in 50
iterations. If cooling.fraction.50 is too small, the search will “freeze”
too soon, evidenced by flat parallel lines in the convergence diagnostics. If
cooling.fraction.50 is too large, the researcher may run of of time,
patience or computing budget (or all three) before the parameter
trajectories approach an MLE. Use the diagnostic plots below, or other
calculations, to address these issues.

Worked solution to the Exercise

63 / 73

convergence-exercise.html

Exercises

best <- m3[r3$logLik>max(r3$logLik)-10]

best |> as.data.frame() |> select(time,.L1,ess,cond.logLik) |>

pivot_longer(-c(.L1,time)) |>

ggplot(aes(x=time,y=value,color=factor(.L1)))+

geom_line()+

guides(color="none")+

facet_grid(name~.,scales="free_y")+

theme_bw()

64 / 73

Exercises

65 / 73

Exercises

best |> traces() |> melt() |>

filter(!(name %in% fp_names)) -> best_tr

best_tr |>

ggplot(aes(x=iteration,y=value,color=factor(.L1)))+

geom_line()+

guides(color="none")+

facet_wrap(~name,scales="free_y")+

theme_bw()

66 / 73

Exercises

67 / 73

Exercises

The likelihood is particularly important to keep in mind. If parameter
estimates are numerically unstable, that could be a consequence of a
weakly identified parameter subspace.

The presence of some weakly identified combinations of parameters is
not fundamentally a scientific flaw; rather, our scientific inquiry looks
to investigate which questions can and cannot be answered in the
context of a set of data and modeling assumptions.

As long as the search is demonstrably approaching the maximum
likelihood region we should not necessarily be worried about the
stability of parameter values (at least, from the point of diagnosing
successful maximization).

So, we zoom in on the likelihood convergence plot:

68 / 73

Exercises

best_tr |> filter(name=="loglik") |>

filter(!is.na(value)) -> logLik_trace

logLik_trace |>

ggplot(aes(x=iteration,y=value,group=.L1))+

geom_line(alpha=0.15)+

lims(y=c(max(logLik_trace$value)-10,NA))+

labs(y="logLik")+

theme_bw()

69 / 73

Exercises

70 / 73

Exercises

Acknowledgments and License

This lesson is prepared for the Simulation-based Inference for
Epidemiological Dynamics module at the Summer Institute in
Statistics and Modeling in Infectious Diseases, SISMID.

The materials build on previous versions of this course and related
courses.

Produced with R version 4.2.3 and pomp version 5.3.1.0.

Licensed under the Creative Commons attribution-noncommercial
license. Please share and remix noncommercially, mentioning its
origin.

71 / 73

https://kingaa.github.io/sbied/
https://kingaa.github.io/sbied/
https://www.biostat.washington.edu/suminst/sismid
https://kingaa.github.io/sbied/acknowledge.html
https://kingaa.github.io/sbied/acknowledge.html
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Exercises

References

Martinez-Bakker M, King AA, Rohani P (2015). “Unraveling the
transmission ecology of polio.” PLoS Biol, 13(6), e1002172.
doi: 10.1371/journal.pbio.1002172.

72 / 73

https://doi.org/10.1371/journal.pbio.1002172

Exercises

License, acknowledgments, and links

This lesson is prepared for the Simulation-based Inference for
Epidemiological Dynamics module at the Summer Institute in
Statistics and Modeling in Infectious Diseases, SISMID.

The materials build on previous versions of this course and related
courses.

Licensed under the Creative Commons Attribution-NonCommercial
license. Please share and remix non-commercially, mentioning its

origin.

Produced with R version 4.2.3 and pomp version 5.3.1.0.

Compiled on July 26, 2023.

Back to Lesson
R codes for this lesson

73 / 73

https://kingaa.github.io/sbied/
https://kingaa.github.io/sbied/
https://www.biostat.washington.edu/suminst/sismid
../acknowledge.html
../acknowledge.html
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
index.html
./main.R

	Covariates
	A POMP model for polio
	A pomp representation of the POMP model
	Logistics for the computations
	Controlling run time
	Parallel computation of the likelihood
	Caching results

	Persistence of polio
	Likelihood maximization
	Profile likelihood
	Exercises
	References

