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Introduction

Objectives

To display a published case study using plug-and-play methods with
non-trivial model complexities.

To show how extra-demographic stochasticity can be modeled.

To demonstrate the use of covariates in pomp.

To demonstrate the use of profile likelihood in scientific inference.

To discuss the interpretation of parameter estimates.

To emphasize the potential need for extra sources of stochasticity in
modeling.
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Introduction

Challenges in inference from disease dynamics

Understanding, forecasting, managing epidemiological systems
increasingly depends on models.

Dynamic models can be used to test causal hypotheses.

Real epidemiological systems:

are nonlinear
are stochastic
are nonstationary
evolve in continuous time
have hidden variables
can be measured only with (large) error

Measles is the paradigm for a nonlinear ecological system that can be
well described by low-dimensional nonlinear dynamics.
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Introduction

Challenges in inference from disease dynamics II

A tradition of careful modeling studies have proposed and found
evidence for a number of specific mechanisms, including

a high value of R0 (c. 15–20)
under-reporting
seasonality in transmission rates associated with school terms
response to changing birth rates
a birth-cohort effect
metapopulation dynamics
fadeouts and reintroductions that scale with city size
spatial traveling waves

Much of this evidence has been amassed from fitting models to data,
using a variety of methods.

See Rohani and King (2010) for a review of some of the high points.
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Model and implementation Overview

Measles in England and Wales

We revisit a classic measles data set, weekly case reports in 954 urban
centers in England and Wales during the pre-vaccine era (1950–1963).

We examine questions regarding:

measles extinction and recolonization
transmission rates
seasonality
resupply of susceptibles

We use a model that
1 expresses our current understanding of measles dynamics
2 includes a long list of mechanisms that have been proposed and

demonstrated in the literature
3 cannot be fit by previous likelihood-based methods

We examine data from large and small towns using the same model,
something no existing methods have been able to do.
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Model and implementation Overview

Measles in England and Wales II

We ask: does our perspective on this disease change when we expect
the models to explain the data in detail?

What bigger lessons can we learn regarding inference for dynamical
systems?
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Model and implementation Data sets

Data sets

He, Ionides, & King, J. R. Soc. Interface (2010)

Twenty towns, including

10 largest
10 smaller, chosen at random

Population sizes: 2k–3.4M

Weekly case reports, 1950–1963

Annual birth records and population sizes, 1944–1963
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Model and implementation Data sets

Map of cities in the analysis
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Model and implementation Data sets

City case counts I: smallest 8 cities
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Model and implementation Data sets

City case counts II: largest 8 cities
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Model and implementation Modeling

Continuous-time Markov process model
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Model and implementation Modeling

Continuous-time Markov process model

Covariates:

B(t) = birth rate, from data
N(t) = population size, from data

Entry into susceptible class:

µBS(t) = (1− c)B(t− τ) + c δ(t− ⌊t⌋)
∫ t

t−1
B(t− τ − s) ds

c = cohort effect
τ = school-entry delay
⌊t⌋ = most recent 1 September before t

Force of infection:

µSE(t) =
β(t)
N(t) (I + ι)α ζ(t)
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Model and implementation Modeling

Continuous-time Markov process model II

ι = imported infections
ζ(t) = Gamma white noise with intensityσSE (He et al., 2010; Bhadra
et al., 2011)
school-term transmission:

β(t) =

{
β0

(
1 + a(1− p)/p

)
during term

β0 (1− a) during vacation

a = amplitude of seasonality
p = 0.7589 is the fraction of the year children are in school.
The factor (1− p)/p ensures that the average transmission rate is β0.

Overdispersed binomial measurement model:
casest |∆NIR = zt ∼ Normal

(
ρ zt, ρ (1− ρ) zt + (ψ ρ zt)

2
)
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Model and implementation Model implementation in pomp

Implementation in pomp

Codes that implement the model in pomp are to be found on the
course website.

In those codes, we first load the needed packages and set the random
seed, to allow reproducibility.

Note that the codes make heavy use of the ggplot2 plotting package
and tidyverse methods.

We also use the convenient R pipe syntax, |>.
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Model and implementation Model implementation in pomp

Data and covariates

The data are measles reports from 20 cities in England and Wales.

We also have information on the population sizes and birth-rates in
these cities; we’ll treat these variables as covariates.

The codes illustrate the pre-processing of the measles and
demography data using London as an example.
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Model and implementation Model implementation in pomp

Data and covariates II

Measles case reports from London:
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Model and implementation Model implementation in pomp

Data and covariates III

We smooth the covariates and delay the entry of newborns into the
susceptible pool.
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Model and implementation Model implementation in pomp

The partially observed Markov process model

We require a simulator for our model. Notable complexities include:

1 Incorporation of the known birthrate.

2 The birth-cohort effect: a specified fraction (cohort) of the cohort
enter the susceptible pool all at once.

3 Seasonality in the transmission rate: during school terms, the
transmission rate is higher than it is during holidays.

4 Extra-demographic stochasticity in the form of a Gamma white-noise
term acting multiplicatively on the force of infection.

5 Demographic stochasticity implemented using Euler-multinomial
distributions.
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Model and implementation Model implementation in pomp

Implementation of the process model

Let’s walk through the rprocess C snippet.

double beta, br, seas, foi, dw, births;

double rate[6], trans[6];

// cohort effect

if (fabs(t-floor(t)-251.0/365.0) < 0.5*dt)

br = cohort*birthrate/dt + (1-cohort)*birthrate;

else

br = (1.0-cohort)*birthrate;
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Model and implementation Model implementation in pomp

Implementation of the process model II

// term-time seasonality

t = (t-floor(t))*365.25;

if ((t>=7 && t<=100) ||

(t>=115 && t<=199) ||

(t>=252 && t<=300) ||

(t>=308 && t<=356))

seas = 1.0+amplitude*0.2411/0.7589;

else

seas = 1.0-amplitude;
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Model and implementation Model implementation in pomp

Implementation of the process model III

// transmission rate

beta = R0*(gamma+mu)*seas;

// expected force of infection

foi = beta*pow(I+iota,alpha)/pop;

// white noise (extrademographic stochasticity)

dw = rgammawn(sigmaSE,dt);
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Model and implementation Model implementation in pomp

Implementation of the process model IV

rate[0] = foi*dw/dt; // stochastic force of infection

rate[1] = mu; // natural S death

rate[2] = sigma; // rate of ending of latent stage

rate[3] = mu; // natural E death

rate[4] = gamma; // recovery

rate[5] = mu; // natural I death
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Model and implementation Model implementation in pomp

Implementation of the process model V

// Poisson births

births = rpois(br*dt);

// transitions between classes

reulermultinom(2, S, &rate[0], dt, &trans[0]);

reulermultinom(2, E, &rate[2], dt, &trans[2]);

reulermultinom(2, I, &rate[4], dt, &trans[4]);
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Model and implementation Model implementation in pomp

Implementation of the process model VI

S += births - trans[0] - trans[1];

E += trans[0] - trans[2] - trans[3];

I += trans[2] - trans[4] - trans[5];

R = pop - S - E - I;

W += (dw - dt)/sigmaSE; // standardized i.i.d. white noise

C += trans[4]; // true incidence
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Model and implementation Model implementation in pomp

Process model observations

In the above, C represents the true incidence, i.e., the number of new
infections occurring over an interval.

Since recognized measles infections are quarantined, we argue that
most infection occurs before case recognition so that true incidence is
a measure of the number of individuals progressing from the I to the
R compartment in a given interval.
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Model and implementation Model implementation in pomp

State initializations

We complete the process model definition by specifying the distribution of
initial unobserved states. The following codes assume that the fraction of
the population in each of the four compartments is known.

double m = pop/(S_0+E_0+I_0+R_0);

S = nearbyint(m*S_0);

E = nearbyint(m*E_0);

I = nearbyint(m*I_0);

R = nearbyint(m*R_0);

W = 0;

C = 0;
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Model and implementation Model implementation in pomp

Measurement model

We’ll model both under-reporting and measurement error.

We want E[cases|C] = ρC, where C is the true incidence and
0 < ρ < 1 is the reporting efficiency.

We’ll also assume that Var[cases|C] = ρ (1− ρ)C + (ψ ρC)2, where
ψ quantifies overdispersion.

Note that when ψ = 0, the variance-mean relation is that of the
binomial distribution. To be specific, we’ll choose
cases | C ∼ f(· | ρ, ψ,C), where

f(c | ρ, ψ,C) =Φ(c+ 1
2 , ρC, ρ (1− ρ)C + (ψ ρC)2)

− Φ(c− 1
2 , ρC, ρ (1− ρ)C + (ψ ρC)2).

Here, Φ(x, µ, σ2) is the c.d.f. of the normal distribution with mean µ
and variance σ2.
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Model and implementation Model implementation in pomp

Measurement model II

The following computes P[cases|C].

double m = rho*C;

double v = m*(1.0-rho+psi*psi*m);

double tol = 0.0;

if (cases > 0.0) {

lik = pnorm(cases+0.5,m,sqrt(v)+tol,1,0)

- pnorm(cases-0.5,m,sqrt(v)+tol,1,0) + tol;

} else {

lik = pnorm(cases+0.5,m,sqrt(v)+tol,1,0) + tol;

}

if (give_log) lik = log(lik);
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Model and implementation Model implementation in pomp

Measurement model III

The following codes simulate cases|C.

double m = rho*C;

double v = m*(1.0-rho+psi*psi*m);

double tol = 0.0;

cases = rnorm(m,sqrt(v)+tol);

if (cases > 0.0) {

cases = nearbyint(cases);

} else {

cases = 0.0;

}
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Model and implementation Model implementation in pomp

Constructing the pomp object

dat |>

pomp(t0=with(dat,2*time[1]-time[2]),

time="time",

rprocess=euler(rproc,delta.t=1/365.25),

rinit=rinit,

dmeasure=dmeas,

rmeasure=rmeas,

covar=covariate_table(covar,times="time"),

accumvars=c("C","W"),

statenames=c("S","E","I","R","C","W"),

paramnames=c("R0","mu","sigma","gamma","alpha","iota",

"rho","sigmaSE","psi","cohort","amplitude",

"S_0","E_0","I_0","R_0")

) -> m1
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Estimation He et al. (2010)

Estimates from He et al. (2010)

He et al. (2010) estimated the parameters of this model. The full set of
estimates is included in the R code accompanying this document, where
they are read into a data frame called mles.
We verify that we get the same likelihood as He et al. (2010).

library(doFuture)

plan(multicore)

foreach(i=1:4, .combine=c,

.options.future=list(seed=998468235L)

) %dopar% {
pfilter(m1,Np=10000,params=theta)

} -> pfs

logmeanexp(logLik(pfs),se=TRUE)

est se

-3801.6339190 0.2186696
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Estimation Simulations

Simulations at the MLE

m1 |>

simulate(params=theta,nsim=3,format="d",include.data=TRUE) |>

ggplot(aes(x=time,y=cases,group=.id,color=(.id=="data")))+

guides(color="none")+

geom_line()+facet_wrap(~.id,ncol=2)
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Estimation Parameter estimation

Parameter transformations

The parameters are constrained to be positive, and some of them are
constrained to lie between 0 and 1.

We can turn the likelihood maximization problem into an
unconstrained maximization problem by transforming the parameters.

Specifically, to enforce positivity, we log transform, to constrain
parameters to (0, 1), we logit transform, and to confine parameters to
the unit simplex, we use the log-barycentric transformation.

pt <- parameter_trans(

log=c("sigma","gamma","sigmaSE","psi","R0"),

logit=c("cohort","amplitude"),

barycentric=c("S_0","E_0","I_0","R_0")

)
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Model diagnostics

ARMA benchmark

Linear, Gaussian auto-regressive moving-average (ARMA) models
provide a flexible non-mechanistic benchmark comparison.

We fit an ARMA(2,2) model to log(y∗n + 1) and correct the likelihood
back to the untransformed data (see Lesson 6 for more details). This
has p = 5 parameters and a log-likelihood of ℓ = −3958.3 for London.

The SEIR model has ℓ = −3804.9 with p = 12.

Minimizing the AIC, 2p− 2ℓ, is equivalent to maximizing ℓ− p.

The aim of mechanistic modeling is not to beat benchmarks, but
falling far behind can diagnose problems.

“Far” means many log units: differences of log-likelihoods are
invariant to the scale of measurement; ratios of log-likelihoods are not.
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Model diagnostics

Log-likelihood anomalies

The benchmark and model log-likelihoods can both be decomposed
as a sum of conditional log-likelihoods, ℓ(θ) =

∑N
n=1 ℓn(θ) where

ℓn(θ) = log fYn|Y1:n−1
(y∗n|y∗1:n−1; θ).

The anomaly for the model at time tn is the difference between the
model conditional log-likelihood and that of the benchmark.

Anomalies can be used similarly to regression residuals: they can
indicate points where the model fails; patterns can reveal scope for
mode improvement.

Conditional log-likelihoods are not scale-invariant, but anomalies are.
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Model diagnostics

Anomaly plot for London

Here, the main anomalies are positive: the log-scale ARMA model is
not good at explaining very low counts.

Negative anomalies result if cases fail to drop when susceptibles
should be depleted. These are not big anomalies.

One major outlier was previously identified and “cleaned.”
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Model diagnostics

Particle filter variance for London

The variance of the pfilter log-likelihood estimate is approximately
the sum of the variances of the conditional log-likelihoods.

Observations with high variance are numerically problematic.

Here, none are larger than 1. We have 2000 particles here, which
seems just enough, though more may be preferable.
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Findings

Results from He et al. (2010)

The linked document shows how a likelihood profile can be constructed
using IF2. The fitting procedure used is as follows:

A large number of searches were started at points across the
parameter space.

Iterated filtering was used to maximize the likelihood.

We obtained point estimates of all parameters for 20 cities.

We constructed profile likelihoods to quantify uncertainty in London
and Hastings.
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Findings Notable findings

Imported infections

force of infection = µSE =
β(t)

N(t)
(I + ι)α ζ(t)
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Findings Notable findings

Seasonality
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Findings Notable findings

Cohort effect
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Findings Notable findings

Birth delay

Profile likelihood for birth-cohort delay, showing 95% and 99% critical
values of the log likelihood.
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Findings Notable findings

Reporting rate
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Findings Notable findings

Predicted vs observed critical community size
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Findings Problematic results

R0 estimates inconsistent with literature

Recall that R0 : a measure of how communicable an infection is.

Existing estimates of R0 (c. 15–20) come from two sources: serology
surveys, and models fit to data using feature-based methods.

50 / 59



Findings Problematic results

Parameter estimates

N1950 R0 IP LP α a ι ψ ρ σSE
Halesworth 2200 33.00 2.30 7.90 0.95 0.38 0.0091 0.64 0.75 0.075
Lees 4200 30.00 2.10 8.50 0.97 0.15 0.0310 0.68 0.61 0.080
Mold 6400 21.00 1.80 5.90 1.00 0.27 0.0140 2.90 0.13 0.054
Dalton in Furness 11000 28.00 2.00 5.50 0.99 0.20 0.0390 0.82 0.46 0.078
Oswestry 11000 53.00 2.70 10.00 1.00 0.34 0.0300 0.48 0.63 0.070
Northwich 18000 30.00 3.00 8.50 0.95 0.42 0.0600 0.40 0.80 0.086
Bedwellty 29000 25.00 3.00 6.80 0.94 0.16 0.0400 0.95 0.31 0.061
Consett 39000 36.00 2.70 9.10 1.00 0.20 0.0730 0.41 0.65 0.071
Hastings 66000 34.00 5.40 7.00 1.00 0.30 0.1900 0.40 0.70 0.096
Cardiff 240000 34.00 3.10 9.90 1.00 0.22 0.1400 0.27 0.60 0.054
Bradford 290000 32.00 3.40 8.50 0.99 0.24 0.2400 0.19 0.60 0.045
Hull 300000 39.00 5.50 9.20 0.97 0.22 0.1400 0.26 0.58 0.064
Nottingham 310000 23.00 3.70 5.70 0.98 0.16 0.1700 0.26 0.61 0.038
Bristol 440000 27.00 4.90 6.20 1.00 0.20 0.4400 0.20 0.63 0.039
Leeds 510000 48.00 11.00 9.50 1.00 0.27 1.2000 0.17 0.67 0.078
Sheffield 520000 33.00 6.40 7.20 1.00 0.31 0.8500 0.18 0.65 0.043
Manchester 700000 33.00 6.90 11.00 0.96 0.29 0.5900 0.16 0.55 0.055
Liverpool 800000 48.00 9.80 7.90 0.98 0.30 0.2600 0.14 0.49 0.053
Birmingham 1100000 43.00 12.00 8.50 1.00 0.43 0.3400 0.18 0.54 0.061
London 3400000 57.00 13.00 13.00 0.98 0.55 2.9000 0.12 0.49 0.088

r 1 0.46 0.95 0.32 0.11 0.30 0.9300 -0.93 -0.20 -0.330

r = corS(·, N1950) (Spearman rank correlation)
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Findings Problematic results

Extrademographic stochasticity

µSE =
β(t)

N(t)
(I + ι) ζ(t)
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Findings Problematic results

Questions

What does it mean that parameter estimates from the fitting disagree
with estimates from other data?

How can one interpret the correlation between infectious period and
city size in the parameter estimates?

How do we interpret the need for extrademographic stochasticity in
this model?
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Findings Problematic results

Simulations at the MLE
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Exercises

Exercise 5.1. Reformulate the model

Modify the He et al. (2010) model to remove the cohort effect. Run
simulations and compute likelihoods to convince yourself that the
resulting codes agree with the original ones for ‘cohort = 0‘.

Now modify the transmission seasonality to use a sinusoidal form.
How many parameters must you use? Fixing the other parameters at
their MLE values, compute and visualize a profile likelihood over
these parameters.

56 / 59



Exercises

Exercise 5.2. Extrademographic stochasticity

Set the extrademographic stochasticity parameter σSE = 0, set α = 1, and
fix ρ and ι at their MLE values, then maximize the likelihood over the
remaining parameters.

How do your results compare with those at the MLE? Compare
likelihoods but also use simulations to diagnose differences between
the models.
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Exercises
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Exercises

License, acknowledgments, and links

This lesson is prepared for the Simulation-based Inference for
Epidemiological Dynamics module at the Summer Institute in
Statistics and Modeling in Infectious Diseases, SISMID.

The materials build on previous versions of this course and related
courses.

Licensed under the Creative Commons Attribution-NonCommercial
license. Please share and remix non-commercially, mentioning its

origin.

Produced with R version 4.3.2 and pomp version 5.6.

Compiled on February 19, 2024.

Back to Lesson
R codes for this lesson
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