Lesson 5.
Case study:
Measles in large and small towns

Aaron A. King and Edward L. lonides
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-
Objectives

@ To display a published case study using plug-and-play methods with
non-trivial model complexities.

To show how extra-demographic stochasticity can be modeled.
To demonstrate the use of covariates in pomp.
To demonstrate the use of profile likelihood in scientific inference.

To discuss the interpretation of parameter estimates.

To emphasize the potential need for extra sources of stochasticity in
modeling.

3/59



Challenges in inference from disease dynamics

Understanding, forecasting, managing epidemiological systems
increasingly depends on models.

Dynamic models can be used to test causal hypotheses.

Real epidemiological systems:

o are nonlinear

are stochastic

are nonstationary

evolve in continuous time

have hidden variables

can be measured only with (large) error

Measles is the paradigm for a nonlinear ecological system that can be
well described by low-dimensional nonlinear dynamics.
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Challenges in inference from disease dynamics Il

@ A tradition of careful modeling studies have proposed and found
evidence for a number of specific mechanisms, including

a high value of Ry (c. 15-20)

under-reporting

seasonality in transmission rates associated with school terms

response to changing birth rates - d’?

a birth-cohort effect SP“)%{%W@I /M

metapopulation dynamics P”{J‘AIQPW"\S.

fadeouts and reintroductions that scale with city size

spatial traveling waves

@ Much of this evidence has been amassed from fitting models to data,
using a variety of methods.

@ See Rohani and King (2010) for a review of some of the high points.
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. Modeland implementation |
Outline

© Model and implementation
@ Overview
o Data sets
@ Modeling
@ Model implementation in pomp
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. Modelandimplementation |
Measles in England and Wales

@ We revisit a classic measles data set, weekly case reports in 954 urban
centers in England and Wales during the pre-vaccine era (1950-1963).

@ We examine questions regarding:

measles extinction and recolonization

transmission rates

seasonality

resupply of susceptibles

@ We use a model that

© expresses our current understanding of measles dynamics

@ includes a long list of mechanisms that have been proposed and
demonstrated in the literature

© cannot be fit by previous likelihood-based methods

@ We examine data from large and small towns using the same model,
something no existing methods have been able to do.

Aos € 29(0
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N “"'>"
Measles in England and Wales |l

@ We ask: does our perspective on this disease change when we expect
the models to explain the data in detail?

@ What bigger lessons can we learn regarding inference for dynamical
systems?
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Data sets

@ He, lonides, & King, J. R. Soc. Interface (2010)
@ Twenty towns, including

e 10 largest
o 10 smaller, chosen at random

@ Population sizes: 2k-3.4M
@ Weekly case reports, 1950-1963
@ Annual birth records and population sizes, 1944-1963
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Map of cities in the analysis
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City case counts Il: largest 8 cities
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Modeling

Continuous-time Markov process model

DL,
v
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Continuous-time Markov process model

o Covariates:
e B(t) = birth rate, from data
e N(t) = population size, from data

@ Entry into susceptible class:

t

pps(t) =1 —c)B(t—71)+co(t— [t]) /t1 B(t—71—s)ds

e ¢ = cohort effect

e 7 = school-entry delay %GMMG\ W]AJ'Q M;Ql
foe )

o |t] = most recent 1 September before ¢

e Force of infection: V} @cko-dm;@fu‘ﬂw

pse(t) = % (I +1)%¢(t) voschilhy
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Continuous-time Markov process model Il

e ¢ = imported infections

e ((t) = Gamma white noise with intensity osg (He et al., 2010; Bhadra
et al., 2011)

e school-term transmission:

B(t) = {50 (1+a(1—p)/p) during term

Bo (1 —a) during vacation

@ a = amplitude of seasonality
o p = 0.7589 is the fraction of the year children are in school.
@ The factor (1 — p)/p ensures that the average transmission rate is 3.

@ Overdispersed binomial measurement model:
cases; | ANjr = z ~ Normal (,0 zt,p(1—p) ze + (w,ozt)z)
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Implementation in pomp

o Codes that implement the model in pomp are to be found on the
course website.

@ In those codes, we first load the needed packages and set the random
seed, to allow reproducibility.

@ Note that the codes make heavy use of the ggplot2 plotting package
and tidyverse methods.

@ We also use the convenient R pipe syntax, |>.
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./codes.R
./codes.R

Data and covariates

@ The data are measles reports from 20 cities in England and Wales.

@ We also have information on the population sizes and birth-rates in
these cities; we'll treat these variables as covariates.

@ The codes illustrate the pre-processing of the measles and
demography data using London as an example.
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Data and covariates |l

Measles case reports from London:
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Data and covariates llI

We smooth the covariates and delay the entry of newborns into the
susceptible pool.
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The partially observed Markov process model

We require a simulator for our model. Notable complexities include:
@ Incorporation of the known birthrate.

@ The birth-cohort effect: a specified fraction (cohort) of the cohort
enter the susceptible pool all at once.

© Seasonality in the transmission rate: during school terms, the
transmission rate is higher than it is during holidays.

@ Extra-demographic stochasticity in the form of a Gamma white-noise
term acting multiplicatively on the force of infection.

© Demographic stochasticity implemented using Euler-multinomial
distributions.
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Implementation of the process model

Let’s walk through the rprocess C snippet.

double beta, br, seas, foi, dw, births;
double rate[6], trans[6];

// cohort effect
if (fabs(t-floor(t)-251.0/365.0) < 0.5%*dt)

br = cohort*birthrate/dt + (l1-cohort)*birthrate;
else

br = (1.0-cohort)*birthrate;
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Implementation of the process model Il

// term-time seasonality
t = (t-floor(t))*365.25;
if ((£>=7 && t<=100) ||
(t>=115 && t<=199)
(t>=252 && t<=300)
(t>=308 && t<=356))
seas = 1.0+amplitude*0.2411/0.7589;
else
seas = 1.0-amplitude;
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Implementation of the process model Ill

// transmission rate
beta = RO*(gamma+mu) *seas;

// expected force of infection
foi = betaxpow(I+iota,alpha)/pop;

// white noise (extrademographic stochasticity)
dw = rgammawn(sigmaSE,dt);
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Implementation of the process model IV

rate [0]
rate[1]
rate[2]
rate[3]
rate[4]
rate[5]

foi*dw/dt;
mu;

sigma;

mu;

gamma ;

mu;

//
//
//
//
//
//

stochastic force of infection
natural S death

rate of ending of latent stage
natural E death

recovery

natural I death
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Implementation of the process model V
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Implementation of the process model VI

S += births - trans[0] - trans[1];

E += trans[0] - trans[2] - trans[3];

I += trans[2] - trans[4] - trans[5];

R=pop-S-E-T1I;

W += (dw - dt)/sigmaSE; // standardized i.i.d. white noise

C += trans[4]; // true incidence) qca/uu[th

VanaSle qﬁ[

Meanre et .

Nee, W s o shle tho kap o feand of flar

nig pawm. That i« gphoal . The erhaoted
W o “shie prowm el whik ca be ploed
o,asour\ﬂ Inesiale hint Seno) i ntoest
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Process model observations

@ In the above, C represents the true incidence, i.e., the number of new
infections occurring over an interval.

@ Since recognized measles infections are quarantined, we argue that
most infection occurs before case recognition so that true incidence is
a measure of the number of individuals progressing from the | to the
R compartment in a given interval.
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State initializations

We complete the process model definition by specifying the distribution of
initial unobserved states. The following codes assume that the fraction of
the population in each of the four compartments is known.

double m = pop/(S_0+E_0+I_0+R_0);

S = nearbyint (m*S_0) ; . % -

E = nearbyint(m*E_O0) ; mhel M” po‘m“‘m}'&o bra

I = nearbyint(m*I_0); PW in [(],(-S } 6s M 5
R = nearbyint(m*R_0); - -

W = O; d O-K U\I‘ﬂd p'l‘pM{O\R’I:N\ . F/ILIIS

C

= 0; foct tabes Powsfrmakinas ..
we Can R 106{5{"‘C Pawsfvmobion
aw C(i,ﬂ.
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Measurement model

o We'll model both under-reporting and measurement error.

e We want E|cases|C| = pC, where C is the true incidence and
0 < p < 1 is the reporting efficiency.

e We'll also assume that Var[cases|C] = p (1 — p) C + (v pC)?, where
1) quantifies overdispersion.

@ Note that when v = 0, the variance-mean relation is that of the
binomial distribution. To be specific, we'll choose
cases | C' ~ f(- | p,v,C), where

fle|p,0,C)=®(c+1,pC,p(L—p)C+ (ppC)?)
—®(c—5,pC,p(1—p)C+ (¥pC)?).

Here, ®(z, i1, 0%) is the c.d.f. of the normal distribution with mean p

and variance o2.
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Measurement model Il
The following computes P[cases|C].

double m = rhox*C;
double v = m*(1.0-rho+psi*psi*m) ;
double tol = 0.0;
if (cases > 0.0) {

lik = pnorm(cases+0.5,m,sqrt(v)+tol,1,0)

- pnorm(cases-0.5,m,sqrt(v)+tol,1,0) + tol;

} else {

lik = pnorm(cases+0.5,m,sqrt(v)+tol,1,0) + tol;
I
if (give_log) lik = log(lik);
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[ 'oc<! implementation in pomp
Measurement model [l1

The following codes simulate cases|C.

double m = rhox*C;
double v = m*(1.0-rho+psi*psi*m);
double tol = 0.0;
cases = rnorm(m,sqrt(v)+tol);
if (cases > 0.0) {
cases = nearbyint(cases);
} else {
cases = 0.0;
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N L . - o ool
Constructing the pomp object

dat |[>
pomp (tO=with(dat,2*time[1]-time[2]),
time="time",
rprocess=euler (rproc,delta.t=1/365.25),
rinit=rinit,
dmeasure=dmeas,
rmeasure=rmeas,
covar=covariate_table(covar,times="time"),
accumvars=c("C","W"),
statenames=c("S","E","I","R","C","W"),
paramnames=c("R0","mu","sigma","gamma","alpha","iota",
"rho","sigmaSE","psi","cohort","amplitude",
U3 G0, U (6 o Ui (555, 3, 0
) —> mi
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. Estimatin |
Outline

© Estimation
@ He et al. (2010)
@ Simulations
@ Parameter estimation
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N ' <t 2! (2010)
Estimates from He et al. (2010)

He et al. (2010) estimated the parameters of this model. The full set of
estimates is included in the R code accompanying this document, where
they are read into a data frame called mles.

We verify that we get the same likelihood as He et al. (2010).

library(doFuture)

plan(multicore)

foreach(i=1:4, .combine=c,
.options.future=list(seed=998468235L)

) %dopar’% {
pfilter(ml,Np=10000,params=theta)

} > pfs

logmeanexp(logLik(pfs) ,se=TRUE)

est se
-3801.6339190 0.2186696
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Simulations at the MLE

ml |>
simulate(params=theta,nsim=3,format="d",include.data=TRUE) [>

ggplot (aes(x=time,y=cases,group=.id,color=(.id=="data")))+
guides(color="none")+
geom_line()+facet_wrap(~.id,ncol=2)

data 1
4000 1

20007 J\AJLMIJ‘L—_M

2 3

4000
20007 MWM

1950 1955 1960 1950 1955 1960
time

cases
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Parameter transformations

@ The parameters are constrained to be positive, and some of them are
constrained to lie between 0 and 1.

@ We can turn the likelihood maximization problem into an
unconstrained maximization problem by transforming the parameters.
@ Specifically, to enforce positivity, we log transform, to constrain

parameters to (0, 1), we logit transform, and to confine parameters to
the unit simplex, we use the log-barycentric transformation.

pt <- parameter_trans(
log=c("sigma","gamma","sigmaSE","psi","R0"),

. S,
logit=c("cohort","amplitude"), — -HN{IK‘“;{—A <
barycentric=c("S_0","E_0","I_0","R_0") k‘[ﬂ @ "

) SVM -h). J a
CXpovandnahag -
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. Modeldiagnostics |
Outline

@ Model diagnostics
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 Model diagnostics |
ARMA benchmark

@ Linear, Gaussian auto-regressive moving-average (ARMA) models
provide a flexible non-mechanistic benchmark comparison.

e We fit an ARMA(2,2) model to log(y;: + 1) and correct the likelihood
back to the untransformed data (see Lesson 6 for more details). This
has p = 5 parameters and a log-likelihood of £ = —3958.3 for London.

@ The SEIR model has ¢ = —3804.9 with p = 12.

@ Minimizing the AIC, 2p — 2/, is equivalent to maximizing ¢ — p.

@ The aim of mechanistic modeling is not to beat benchmarks, but
falling far behind can diagnose problems.

@ “Far” means many log units: differences of log-likelihoods are
invariant to the scale of measurement; ratios of log-likelihoods are not.
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. Modeldiagnostics
Log-likelihood anomalies

@ The benchmark and model log-likelihoods can both be decomposed
as a sum of conditional log-likelihoods, ¢(6) = ZnNzlén(ﬁ) where
(n(0) =108 fv,,1v1 1 WY1 —15 0)-

@ The anomaly for the model at time ¢, is the difference between the
model conditional log-likelihood and that of the benchmark.

@ Anomalies can be used similarly to regression residuals: they can
indicate points where the model fails; patterns can reveal scope for
mode improvement.

o Conditional log-likelihoods are not scale-invariant, but anomalies are.

i o et & He o oF ki e
sne % bl fo'b-ﬁk we (an earthi,
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Anomaly plot for London

15
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Date
@ Here, the main anomalies are positive: the log-scale ARMA model is
not good at explaining very low counts.

@ Negative anomalies result if cases fail to drop when susceptibles
should be depleted. These are not big anomalies.

@ One major outlier was previously identified and “cleaned.”
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Particle filter variance for London
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@ The variance of the pfilter log-likelihood estimate is approximately
the sum of the variances of the conditional log-likelihoods.

@ Observations with high variance are numerically problematic.

@ Here, none are larger than 1. We have 2000 particles here, which
seems just enough, though more may be preferable.
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. Findings |
Outline

© Findings
@ Notable findings
@ Problematic results
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- Findies
Results from He et al. (2010)

The linked document shows how a likelihood profile can be constructed
using IF2. The fitting procedure used is as follows:

@ A large number of searches were started at points across the
parameter space.

o lterated filtering was used to maximize the likelihood.
@ We obtained point estimates of all parameters for 20 cities.

@ We constructed profile likelihoods to quantify uncertainty in London
and Hastings.
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N (:2b'e findings
Cohort effect
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values of the log likelihood.
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Notable findings

Reporting rate
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N \>0'c fncings
Predicted vs observed critical community size (CCS)
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R, estimates inconsistent with literature

@ Recall that Ry : a measure of how communicable an infection is.

e Existing estimates of Ry (c. 15-20) come from two sources: serology
surveys, and models fit to data using feature-based methods.

London

-3814

profile log likelihood

-1594
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Problematic results
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Halesworth 2200 33.00 2.30 7.90 0.95 0.38 0.0091 0.64 0.75 0.075
Lees 4200 30.00 2.10 8.50 0.97 0.15 0.0310 0.68 0.61 0.080
Mold 6400 21.00 1.80 5.90 1.00 0.27 0.0140 2.90 0.13 0.054
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Problematic results
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@ What does it mean that parameter estimates from the fitting disagree
with estimates from other data?

@ How can one interpret the correlation between infectious period and
city size in the parameter estimates?
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Exercise 5.1. Reformulate the model

e Modify the He et al. (2010) model to remove the cohort effect. Run
simulations and compute likelihoods to convince yourself that the
resulting codes agree with the original ones for ‘cohort = 0".

@ Now modify the transmission seasonality to use a sinusoidal form.
How many parameters must you use? Fixing the other parameters at
their MLE values, compute and visualize a profile likelihood over
these parameters.
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Exercise 5.2. Extrademographic stochasticity

Set the extrademographic stochasticity parameter ogg = 0, set « = 1, and
fix p and ¢ at their MLE values, then maximize the likelihood over the
remaining parameters.

@ How do your results compare with those at the MLE? Compare
likelihoods but also use simulations to diagnose differences between
the models.
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This lesson is prepared for the Simulation-based Inference for
Epidemiological Dynamics module at the Summer Institute in
Statistics and Modeling in Infectious Diseases, SISMID.

The materials build on previous versions of this course and related
courses.

Licensed under the Creative Commons Attribution-NonCommercial
license. Please share and remix non-commercially, mentioning its

origin.
Produced with R version 4.3.2 and pomp version 5.6.
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