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Likelihood-based inference in the context of ARMA models

Background on likelihood-based inference

For any data y∗1:N and any probabilistic model fY1:N
(y1:N ; θ) we

define the likelihood function to be

L(θ) = fY1:N
(y∗1:N ; θ).

It is often convenient to work with the logarithm to base e of the
likelihood, which we write as

ℓ(θ) = logL(θ).

Using the likelihood function as a statistical tool is a very general
technique, widely used since Fisher (1922) (Wikipedia:
Likelihood function).

Time series analysis involves various situations where we can, with
sufficient care, compute the likelihood function and take advantage of
the general framework of likelihood-based inference.
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Likelihood-based inference in the context of ARMA models

Computation of the likelihood function for ARMA models is not
entirely straightforward.

Computationally efficient algorithms exist, using a state space model
representation of ARMA models that will be developed later in this
course.

For now, it is enough that software exists to evaluate and maximize
the likelihood function for a Gaussian ARMA model. Our immediate
task is to think about how to use that capability.
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Likelihood-based inference in the context of ARMA models

Before evaluation of the ARMA likelihood became routine, it was
popular to use a method of moments estimator called Yule-Walker
estimation (Shumway and Stoffer, 2017, Section 3.5). This is
nowadays mostly of historical interest.

For massively long time series data and big ARMA models, it can be
computationally infeasible to work with the likelihood function.
However, we are going to focus on the common situation where we
can (with due care) work with the likelihood.

Likelihood-based inference (meaning statistical tools based on the
likelihood function) provides tools for parameter estimation, standard
errors, hypothesis tests and diagnosing model misspecification.

Likelihood-based inference often (but not always) has favorable
theoretical properties. Here, we are not especially concerned with the
underlying theory of likelihood-based inference. On any practical
problem, we can check the properties of a statistical procedure by
simulation experiments.
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Likelihood-based inference in the context of ARMA models The maximum likelihood estimator

The maximum likelihood estimator (MLE)

A maximum likelihood estimator (MLE) is

θ̂(y1:N ) = argmax
θ
fY1:N

(y1:N ; θ),

where argmaxθ g(θ) means a value of argument θ at which the
maximum of the function g is attained, so
g
(
argmaxθ g(θ)

)
= maxθ g(θ).

If there are many values of θ giving the same maximum value of the
likelihood, then an MLE still exists but is not unique.

The maximum likelihood estimate (also known as the MLE) is

θ̂ = θ̂(y∗1:N )

= argmax
θ

L(θ)

= argmax
θ
ℓ(θ).
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Likelihood-based inference in the context of ARMA models The maximum likelihood estimator

Question 5.1. Why are argmaxθ L(θ) and argmaxθ ℓ(θ) the same?

We can write θ̂MLE to denote the MLE if we are considering various
alternative estimation methods. However, in this course, we will most
often be using maximum likelihood estimation so we let θ̂ correspond
to this approach.
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Likelihood-based inference in the context of ARMA models The maximum likelihood estimator

Standard errors for the MLE

As statisticians, it would be irresponsible to present an estimate
without a measure of uncertainty!

Usually, this means obtaining a confidence interval, or an approximate
confidence interval.

It is good to say approximate when you present something that is not
exactly a confidence interval with the claimed coverage. For example,
remind yourself of the definition of a 95% confidence interval.

Saying “approximate” reminds you that there is some checking that
could be done to assess how accurate the approximation is in your
particular situation.
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Likelihood-based inference in the context of ARMA models The maximum likelihood estimator

Three ways to quantify statistical uncertainty in an MLE

1 Fisher information. This is computationally quick, but works well only
when θ̂(Y1:N ) is well approximated by a normal distribution.

2 Profile likelihood estimation. This is a bit more computational effort,
but generally is preferable to the Fisher information.

3 A simulation study, also known as a bootstrap.
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Likelihood-based inference in the context of ARMA models Fisher information

Standard errors via the observed Fisher information

We suppose that θ ∈ RD and so we can write θ = θ1:D.
The Hessian matrix of a function is the matrix of its second partial
derivatives. We write the Hessian matrix of the log likelihood function
as ∇2ℓ(θ), a D ×D matrix whose (i, j) element is[

∇2ℓ(θ)
]
ij
=

∂2

∂θi∂θj
ℓ(θ).

The observed Fisher information is

Î = −∇2ℓ(θ̂).

A standard asymptotic approximation to the distribution of the MLE
for large N is

θ̂(Y1:N ) ≈ N
[
θ, Î−1

]
,

where θ is the true parameter value. This asserts that the MLE is
asymptotically unbiased, with variance asymptotically attaining the
Cramer-Rao lower bound.
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Likelihood-based inference in the context of ARMA models Fisher information

Since the MLE attains the Cramer-Rao lower bound, under regularity
conditions, we it is asymptotically efficient.

We can interpret ≈ in the above normal approximation to mean “one
could write a limit statement formally justifying this approximation in
a suitable limit.” Almost equivalently, ≈ can mean “this
approximation is useful in the finite sample situation at hand.”

A corresponding approximate 95% confidence interval for θd is

θ̂d ± 1.96
([
Î−1

]
dd

)1/2
. The R function arima computes standard

errors for the MLE of an ARMA model in this way.

We usually only have one time series, with some fixed N , and so we
cannot in practice take N → ∞. When our time series model is
non-stationary it may not even be clear what it would mean to take
N → ∞. These asymptotic results should be viewed as nice
mathematical reasons to consider computing an MLE, but not a
substitute for checking how the MLE behaves for our model and data.

11 / 49

randall-stat-ionides



Likelihood-based inference in the context of ARMA models Profile likelihood confidence intervals

Confidence intervals via the profile likelihood

We consider the problem of obtaining a confidence interval for θd, the
dth component of θ1:D.

The profile log likelihood function of θd is defined to be

ℓprofiled (θd) = max
ϕ∈RD:ϕd=θd

ℓ(ϕ).

In general, the profile likelihood of one parameter is constructed by
maximizing the likelihood function over all other parameters.

Check that maxθd ℓ
profile
d (θd) = maxθ1:D ℓ(θ1:D). Maximizing the

profile likelihood ℓprofiled (θd) gives the MLE, θ̂d.

An approximate 95% confidence interval for θd is given by{
θd : ℓ(θ̂)− ℓprofiled (θd) < 1.92

}
.

This is known as a profile likelihood confidence interval.
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Likelihood-based inference in the context of ARMA models Profile likelihood confidence intervals

Where does the 1.92 cutoff come from

The cutoff 1.92 is derived using Wilks’s theorem, which we will
discuss in more detail when we develop likelihood ratio tests.

Note that 1.92 = 1.962

2 .

The asymptotic justification of Wilks’s theorem is the same limit that
justifies the Fisher information standard errors.

Profile likelihood confidence intervals tend to work better than Fisher
information confidence intervals when the log likelihood function is
not close to quadratic near its maximum. This is more common when
N is not large.
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Likelihood-based inference in the context of ARMA models Bootstrap standard errors

A Simulation study, also called bootstrap

If done carefully and well, this can be the best approach.

A confidence interval is a claim about reproducibility. You claim, so
far as your model is correct, that on 95% of realizations from the
model, a 95% confidence interval you have constructed will cover the
true value of the parameter.

A simulation study can check this claim directly.

The simulation study takes time to develop and debug, time to
explain, and time for the reader to understand and check what you
have done. We usually carry out simulation studies to check our main
conclusions only.
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Likelihood-based inference in the context of ARMA models Bootstrap standard errors

Bootstrap methods for constructing standard errors and
confidence intervals

Suppose we want to know the statistical behavior of the estimator
θ̂(y1:N ) for models in a neighborhood of the MLE.

In particular, let’s consider the problem of estimating uncertainty
about θ1, the first component of the vector θ.

We use simulation to assess the behavior of the maximum likelihood
estimator, θ̂1(y1:N ), and possibly the coverage of an associated
confidence interval estimator,

[
θ̂1,lo(y1:N ), θ̂1,hi(y1:N )

]
.

The confidence interval estimator could be constructed using either
the Fisher information method or the profile likelihood approach.
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Likelihood-based inference in the context of ARMA models Bootstrap standard errors

We can design a simulation study to address the following goals:

(A) Evaluate the coverage of a proposed confidence interval estimator,
[θ̂1,lo, θ̂1,hi],

(B) Construct a standard error for θ̂1,

(C) Construct a confidence interval for θ1 with exact local coverage.
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Likelihood-based inference in the context of ARMA models Bootstrap standard errors

A simulation study

1. Generate J independent Monte Carlo simulations,

Y
[j]
1:N ∼ fY1:N

(y1:N ; θ̂) for j ∈ 1 : J.

2. For each simulation, evaluate the maximum likelihood estimator,

θ̂[j] = θ̂
(
Y

[j]
1:N

)
for j ∈ 1 : J,

and, if desired, the confidence interval estimator,[
θ̂
[j]
1,lo, θ̂

[j]
1,hi

]
=

[
θ̂1,lo(Y

[j]
1:N ), θ̂1,hi(Y

[j]
1:N )

]
.

3. For large J , the coverage of the proposed confidence interval is well
approximated, for models in a neighborhood of θ̂, by the proportion of the

intervals
[
θ̂
[j]
1,lo, θ̂

[j]
1,hi

]
that include θ̂1.

4. The sample standard deviation of {θ̂[j]1 , j ∈ 1 : J} is a natural standard

error to associate with θ̂1.
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Model selection for ARMA models Likelihood ratio tests

Likelihood ratio tests for nested hypotheses

The whole parameter space on which the model is defined is Θ ⊂ RD.

Suppose we have two nested hypotheses

H⟨0⟩ : θ ∈ Θ⟨0⟩,

H⟨1⟩ : θ ∈ Θ⟨1⟩,

defined via two nested parameter subspaces, Θ⟨0⟩ ⊂ Θ⟨1⟩, with
respective dimensions D⟨0⟩ < D⟨1⟩ ≤ D.

We consider the log likelihood maximized over each of the hypotheses,

ℓ⟨0⟩ = sup
θ∈Θ⟨0⟩

ℓ(θ),

ℓ⟨1⟩ = sup
θ∈Θ⟨1⟩

ℓ(θ).

18 / 49



Model selection for ARMA models Likelihood ratio tests

A useful approximation asserts that, under the hypothesis H⟨0⟩,

ℓ⟨1⟩ − ℓ⟨0⟩ ≈ (1/2)χ2
D⟨1⟩−D⟨0⟩ ,

where χ2
d is a chi-squared random variable on d degrees of freedom

and ≈ means ”is approximately distributed as.”

We will call this the Wilks approximation.

The Wilks approximation can be used to construct a hypothesis test
of the null hypothesis H⟨0⟩ against the alternative H⟨1⟩.

This is called a likelihood ratio test since a difference of log
likelihoods corresponds to a ratio of likelihoods.

When the data are iid, N → ∞, and the hypotheses satisfy suitable
regularity conditions, this approximation can be derived
mathematically and is known as Wilks’s theorem.

The chi-squared approximation to the likelihood ratio statistic may be
useful, and can be assessed empirically by a simulation study, even in
situations that do not formally satisfy any known theorem.
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Model selection for ARMA models Likelihood ratio tests

Using a likelihood ratio test to construct profile likelihood
confidence intervals

Recall the duality between hypothesis tests and confidence intervals:

The estimated parameter θ∗ does not lead us to reject a null
hypothesis of θ = θ⟨0⟩ at the 5% level

⇕
θ⟨0⟩ is in a 95% confidence interval for θ.

We can check what the 95% cutoff is for a chi-squared distribution
with one degree of freedom,

qchisq(0.95,df=1)

[1] 3.841459

We can now see how the Wilks approximation suggests a confidence
interval constructed from parameter values having a profile likelihood
within 1.92 log units of the maximum.
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Model selection for ARMA models Akaike’s information criterion (AIC)

Akaike’s information criterion (AIC)

Likelihood ratio tests provide an approach to model selection for
nested hypotheses, but how about when models are not nested?

A more general approach is to compare likelihoods of different models
by penalizing the likelihood of each model by a measure of its
complexity.

Akaike’s information criterion AIC is given by

AIC = −2× ℓ(θ∗) + 2D

“Minus twice the maximized log likelihood plus twice the number of
parameters.”

We are invited to select the model with the lowest AIC score.

AIC was derived as an approach to minimizing prediction error.
Increasing the number of parameters leads to additional overfitting
which can decrease predictive skill of the fitted model.
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Model selection for ARMA models Akaike’s information criterion (AIC)

A caution for using AIC

Viewed as a hypothesis test, AIC may have weak statistical properties.

It is a mistake to interpret AIC by making a claim that the favored
model has been shown to provides a superior explanation of the data.

However, viewed as a way to select a model with reasonable predictive
skill from a range of possibilities, it is often useful.
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Model selection for ARMA models Akaike’s information criterion (AIC)

Comparing AIC with likelihood ratio tests

Question 5.2. Suppose we are in a situation in which we wish to choose
between two nested hypotheses, with dimensions D⟨0⟩ < D⟨1⟩. Suppose
the Wilks approximation is valid. Consider the strategy of selecting the
model with the lowest AIC value, and view this model selection approach
as a formal statistical test.

(A) Find an expression for the size of this AIC test (i.e, the probability of
rejecting the null hypothesis, H⟨0⟩, when this null hypothesis is true).

(B) Evaluate this expression for D⟨1⟩ −D⟨0⟩ = 1.

23 / 49

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides



Fitting ARMA models in R

Likelihood-based inference for ARMA models in R

The Great Lakes are an important resource for leisure, agriculture and
industry in this region.

A past concern has been whether human activities such as water
diversion or channel dredging might be leading to a decline in lake
levels.

A current concern has been high levels leading to coastal erosion.

Are lake levels affected by climate change?

The physical mechanisms are not always obvious: for example,
evaporation tends to be highest when the weather is cold but the lake
is not ice-covered.

We look at monthly time series data on the level of Lake Huron,
which is essentially the same as Lake Michigan.
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Fitting ARMA models in R

Reading in the data

The file huron_level.csv gives monthly water level, in meters, for Lakes
Michigan and Huron from 1860 to 2023.

dat <- read.table(file="huron_level.csv",sep=",",header=TRUE)

head(dat[,1:7],2)

Year Jan Feb Mar Apr May Jun

1860 177.285 177.339 177.349 177.388 177.425 177.461

1861 177.077 177.105 177.224 177.254 177.382 177.431
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Fitting ARMA models in R

For now, we avoid monthly seasonal variation by considering an annual
series of January depths. We will investigate seasonal variation later in the
course, but sometimes it is best avoided.

huron_level <- dat$Jan

year <- dat$Year

plot(huron_level~year,type="l")
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Fitting ARMA models in R

Until the recent surge in water level, there was concern about a
long-run decline in lake level due to dredging or water diversion or
climate change.
We put ourselves back in 2014 and temporarily ignore subsequent data
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Fitting ARMA models in R

Fitting an ARMA model

Later, we will consider hypotheses of trend. For now, let’s start by
fitting a stationary ARMA(p, q) model under the null hypothesis that
there is no trend. This hypothesis, which asserts that nothing has
substantially changed in this system over the last 160 years, is not
entirely unreasonable from looking at the data.

We seek to fit a stationary Gaussian ARMA(p,q) model with
parameter vector θ = (ϕ1:p, ψ1:q, µ, σ

2) given by

ϕ(B)(Yn − µ) = ψ(B)ϵn,

where

µ = E[Yn]
ϕ(x) = 1− ϕ1x− · · · − ϕpx

p,

ψ(x) = 1 + ψ1x+ · · ·+ ψqx
q,

ϵn ∼ iidN [0, σ2].
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Fitting ARMA models in R

Choosing p and q

We need to decide where to start in terms of values of p and q.
We tabulate AIC values for a range of different choices of p and q.

aic_table <- function(data,P,Q){
table <- matrix(NA,(P+1),(Q+1))

for(p in 0:P) {
for(q in 0:Q) {

table[p+1,q+1] <- arima(data,order=c(p,0,q))$aic

}
}
dimnames(table) <- list(paste("AR",0:P, sep=""),

paste("MA",0:Q,sep=""))

table

}
huron_aic_table <- aic_table(huron_level,4,5)

require(knitr)

kable(huron_aic_table,digits=2)
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Fitting ARMA models in R

MA0 MA1 MA2 MA3 MA4 MA5
AR0 166.78 46.98 7.71 -13.70 -17.62 -24.89
AR1 -37.25 -36.62 -34.74 -33.13 -33.14 -31.18
AR2 -36.52 -37.41 -35.89 -33.89 -33.24 -31.91
AR3 -34.79 -34.43 -32.44 -31.91 -32.05 -32.14
AR4 -33.19 -33.91 -33.48 -33.54 -30.15 -29.53

Question 5.3. What do we learn by interpreting the results in the above
table of AIC values?

Question 5.4. In what ways might we have to be careful not to
over-interpret the results of this table?
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Fitting ARMA models in R

Let’s fit the ARMA(2,1) model recommended by consideration of AIC.

huron_arma21 <- arima(huron_level,order=c(2,0,1))

huron_arma21

Call:

arima(x = huron_level, order = c(2, 0, 1))

Coefficients:

ar1 ar2 ma1 intercept

-0.0561 0.7936 1.0000 176.4587

s.e. 0.0521 0.0525 0.0257 0.1209

sigma^2 estimated as 0.04217: log likelihood = 23.71, aic = -37.41
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Fitting ARMA models in R Examining the AR and MA roots

We can examine the roots of the AR polynomial,

AR_roots <- polyroot(c(1,-coef(huron_arma21)[c("ar1","ar2")]))

AR_roots

[1] 1.158413-2.249931e-22i -1.087763+2.249931e-22i

The roots are just outside the unit circle, suggesting we have a
stationary causal fitted ARMA.

However, the MA root is −1, showing that the fitted model is at the
threshold of non-invertibility.

Do we have a non-invertibility problem? We investigate this using
profile and bootstrap methods. The claimed standard error on the
MA1 coefficient, from the Fisher information approach used by
arima, is small.
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Fitting ARMA models in R Examining the AR and MA roots

First, we can see if the approximate confidence interval constructed
using profile likelihood is in agreement with the approximate
confidence interval constructed using the observed Fisher information.
To do this, we need to maximize the ARMA likelihood while fixing
the MA1 coefficient at a range of values. This is done using arima in
the code below.
Note that the fixed argument expects a vector of length p+ q + 1
corresponding to a concatenated vector (ϕ1:p, ψ1:q, µ). Somehow, the
Gaussian white noise variance, σ2, is not included in this
representation. Parameters with NA entries in fixed are estimated.

K <- 500

ma1 <- seq(from=0.2,to=1.1,length=K)

profile_loglik <- rep(NA,K)

for(k in 1:K){
profile_loglik[k] <- logLik(arima(huron_level,order=c(2,0,1),

fixed=c(NA,NA,ma1[k],NA)))

}
plot(profile_loglik~ma1,ty="l")
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Fitting ARMA models in R Examining the AR and MA roots

Question 5.5. Interpret the profile likelihood plot for ψ1.
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Fitting ARMA models in R Examining the AR and MA roots

Question 5.6. What do you conclude about the Fisher information
confidence interval proposed by arima?

Question 5.7. In what situations is the Fisher information confidence
interval reliable?

Question 5.8. Is this profile likelihood plot, and its statistical
interpretation, reliable? How could you support your opinion on this?
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Fitting ARMA models in R A simulation study

set.seed(578922)

J <- 1000

params <- coef(huron_arma21)

ar <- params[grep("^ar",names(params))]

ma <- params[grep("^ma",names(params))]

intercept <- params["intercept"]

sigma <- sqrt(huron_arma21$sigma2)

theta <- matrix(NA,nrow=J,ncol=length(params),

dimnames=list(NULL,names(params)))

for(j in 1:J){
try({
Y_j <- arima.sim(

list(ar=ar,ma=ma),

n=length(huron_level),

sd=sigma

)+intercept

theta[j,] <- coef(arima(Y_j,order=c(2,0,1)))

})
}
theta <- na.omit(theta)

hist(theta[,"ma1"],freq=FALSE) 36 / 49



Fitting ARMA models in R A simulation study

This seems consistent with the profile likelihood plot.

A density plot shows this similarity even more clearly.
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Fitting ARMA models in R A simulation study

plot(density(theta[,"ma1"],bw=0.05))

Here, we look at the raw plot for instructional purposes. For a report,
one should improve the default axis labels and title.
Note that arima transforms the model to invertibility. Thus, the
estimated value of θ1 can only fall in the interval [−1, 1].

range(theta[,"ma1"])

[1] -0.9999999 1.0000000
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Fitting ARMA models in R A simulation study

A minor technical issue: estimated densities outside [−1, 1] are
artifacts of the density estimation procedure.

Question 5.9. How would you refine this density estimation procedure to
respect the range of the parameter estimation procedure?

We do a simulation study for which we fit ARMA(2,1) when the true
model is AR(1).
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Fitting ARMA models in R A simulation study

Using multiple cores for simulation studies

When doing simulation studies, multicore computing is helpful. All
modern computers have multiple cores.

A basic approach to multicore statistical computing is to tell R you
want it to look for available processors, using the doParallel
package.

We can use foreach in the doParallel package to carry out a
parallel for loop where jobs are sent to different processors.

library(doParallel)

registerDoParallel()
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Fitting ARMA models in R A simulation study

J <- 1000

huron_ar1 <- arima(huron_level,order=c(1,0,0))

params <- coef(huron_ar1)

ar <- params[grep("^ar",names(params))]

intercept <- params["intercept"]

sigma <- sqrt(huron_ar1$sigma2)

t1 <- system.time(

huron_sim <- foreach(j=1:J) %dopar% {
Y_j <- arima.sim(list(ar=ar),n=length(huron_level),

sd=sigma)+intercept

try(coef(arima(Y_j,order=c(2,0,1))))

}
)
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Fitting ARMA models in R A simulation study

Some of these arima calls did not successfully produce parameter
estimates. The try function lets the simulation proceed despite these
errors. Let’s see how many of them fail:

sum(sapply(huron_sim, function(x) inherits(x,"try-error")))

[1] 2
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Fitting ARMA models in R A simulation study

Now, for the remaining ones, we can look at the resulting estimates of
the MA1 component:

ma1 <- unlist(lapply(huron_sim,function(x)

if(!inherits(x,"try-error"))x["ma1"] else NULL ))

hist(ma1,breaks=50)
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When the true model is AR1 and we fit ARMA(2,1), it seems that we
often obtain a model with estimated MA1 coefficient on the boundary
of invertibility.

Thus, we cannot reject an AR1 hypothesis for the Huron data, even
though the Fisher information based analysis appears to give strong
evidence that the data should be modeled with a nonzero MA1
coefficient.

It may be sensible to avoid fitted models too close to the boundary of
invertibility. This is a reason not to blindly accept whatever model
AIC might suggest.
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Question 5.10. What else could we look for to help diagnose, and
understand, this kind of model fitting problem? Hint: pay some more
attention to the roots of the fitted ARMA(2,1) model.
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Fitting ARMA models in R Assessing numerical correctness

Assessing the numerical correctness of evaluation and
maximization of the likelihood function

We can probably suppose that arima() has negligible numerical error
in evaluating the likelihood.

Likelihood evaluation is a linear algebra computation which should be
numerically stable away from singularities.

Possibly, numerical problems could arise for models very close to
reducibility (canceling AR and MA roots).

Numerical optimization is more problematic.

arima calls the general purpose optimization routine optim.

The likelihood surface can be multimodal and have nonlinear ridges,
when AR and MA roots almost cancel.

No optimization procedure is reliable for maximizing awkward,
non-convex functions.

Evidence for imperfect maximization (assuming negligible likelihood
evaluation error) can be found in the AIC table, copied below.
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MA0 MA1 MA2 MA3 MA4 MA5
AR0 166.8 47.0 7.7 -13.7 -17.6 -24.9
AR1 -37.2 -36.6 -34.7 -33.1 -33.1 -31.2
AR2 -36.5 -37.4 -35.9 -33.9 -33.2 -31.9
AR3 -34.8 -34.4 -32.4 -31.9 -32.0 -32.1
AR4 -33.2 -33.9 -33.5 -33.5 -30.1 -29.5

Question 5.11. How is this table inconsistent with perfect maximization?

Hint: recall that, for nested hypotheses H⟨0⟩ ⊂ H⟨1⟩, the likelihood
maximized over H⟨1⟩ cannot be less than the likelihood maximized
over H⟨0⟩.
Recall also the definition of AIC,
AIC = -2× maximized log likelihood + 2× number of parameters
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Further reading

Section 3.5 of Shumway and Stoffer (2017) gives a complementary
discussion of parameter estimation for ARMA models.

Section 3.7 of Shumway and Stoffer (2017) takes a different
perspective on selecting ARMA models, putting less emphasis on
likelihood. Both perspectives can be valuable.
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