Modeling and Analysis of Time Series Data

Chapter 6: Extending the ARMA model: Seasonality, integration and trend

Edward L. Ionides

Outline

- Seasonality
 - The SARMA model
- Differencing and integration
 - The ARIMA model
 - The SARIMA model
- 3 Trend estimation: regression with ARMA errors
- Testing for trend vs unit root

Seasonal autoregressive moving average (SARMA) models

ullet A general SARMA $(p,q) imes (P,Q)_{12}$ model for monthly data is

[S1]
$$\phi(B)\Phi(B^{12})(Y_n - \mu) = \psi(B)\Psi(B^{12})\epsilon_n$$
,

where $\{\epsilon_n\}$ is a white noise process and

$$\mu = \mathbb{E}[Y_n]
\phi(x) = 1 - \phi_1 x - \dots - \phi_p x^p,
\psi(x) = 1 + \psi_1 x + \dots + \psi_q x^q,
\Phi(x) = 1 - \Phi_1 x - \dots - \Phi_P x^P,
\Psi(x) = 1 + \Psi_1 x + \dots + \Psi_Q x^Q.$$

- SARMA is a special case of ARMA, where the AR and MA polynomials are factored into a **monthly** polynomial in B and an **annual polynomial** (also called **seasonal polynomial**) in B^{12} .
- Everything we learned about ARMA models (including assessing causality, invertibility and reducibility) also applies to SARMA.

Choosing the period for a SARMA model

- For the SARMA $(p,q) \times (P,Q)_{12}$ model, 12 is called the **period**.
- One could write a SARMA model for some period other than 12.
- A SARMA $(p,q) \times (P,Q)_4$ model could be appropriate for quarterly data.
- In principle, a SARMA $(p,q) \times (P,Q)_{52}$ model could be appropriate for weekly data, though in practice ARMA and SARMA may not work so well for higher frequency data.
- The seasonal period should be appropriate for the system being modeled. It is usually inappropriate to fit a SARMA $(p,q) \times (P,Q)_9$ model just because you notice a high sample autocorrelation at lag 9.

Consider the following two models:

[S2]
$$Y_n = 0.5Y_{n-1} + 0.25Y_{n-12} + \epsilon_n$$
,

[S3]
$$Y_n = 0.5Y_{n-1} + 0.25Y_{n-12} - 0.125Y_{n-13} + \epsilon_n$$
,

Question 6.1. Which of [S2] and/or [S3] is a SARMA model?

Question 6.2. Why do we assume a multiplicative structure in the SARMA model, [S1]? What theoretical and practical advantages (or disadvantages) arise from requiring that an ARMA model for seasonal behavior has polynomials that can be factored as a product of a monthly polynomial and an annual polynomial?

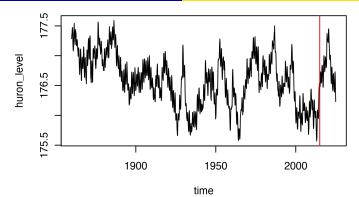
Fitting a SARMA model

We fit a monthly version of the Lake Huron depth data described earlier.

```
dat <- read.table(file="huron_level.csv",sep=",",header=TRUE)
dat[1:3,1:7]

Year Jan Feb Mar Apr May Jun
1860 177.285 177.339 177.349 177.388 177.425 177.461
1861 177.077 177.105 177.224 177.254 177.382 177.431
1862 177.227 177.181 177.272 177.321 177.397 177.437</pre>
```

```
huron_level <- as.vector(t(dat[,2:13]))
time <- rep(dat$Year,each=12)+ rep(0:11,nrow(dat))/12
plot(huron_level~time,type="1")</pre>
```



Based on our previous analysis, we try fitting AR(1) for the annual polynomial. We try ARMA(1,1) for the monthly part, giving

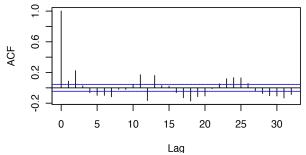
$$(1 - \Phi_1 B^{12})(1 - \phi_1 B)(Y_n - \mu) = (1 + \psi_1 B)\epsilon_n.$$
 (1)

 As discussed earlier, we analyze data only up to 2014, shown by a red line on the plot.

```
huron level <- huron level [time < 2014.99]
time <- time[time < 2014.99]
huron_sarma11x10 <- arima(huron_level,
  order=c(1,0,1),
  seasonal=list(order=c(1,0,0),period=12)
huron_sarma11x10
Call:
arima(x = huron_level, order = c(1, 0, 1), seasonal = list(order = c(1, 0, 0),
   period = 12))
Coefficients:
        ar1 ma1 sar1 intercept
     0.9649 0.4170 0.5197 176.5727
s.e. 0.0062 0.0198 0.0215 0.0931
sigma^2 estimated as 0.002372: log likelihood = 2977.51, aic = -5945.03
```

Residual analysis

- Residual analysis is similar to non-seasonal ARMA models.
- We look for residual correlations at lags corresonding to multiples of the period (here, 12, 24, 36, ...) for misspecified annual dependence.



Question 6.3. What do you conclude from this residual analysis? What would you do next?

ARMA models for differenced data

- Applying a difference operation to the data can make it look more stationary and therefore more appropriate for ARMA modeling.
- This can be viewed as a transformation to stationarity
- ullet We can transform the data $y_{1:N}^*$ to $z_{2:N}$

$$z_n = \Delta y_n^* = y_n^* - y_{n-1}^*. (2)$$

- Then, an ARMA(p,q) model $Z_{2:N}$ for the differenced data $z_{2:N}$ is called an **integrated autoregressive moving average** model for $y_{1:N}^*$ and is written as ARIMA(p,1,q).
- ullet Formally, the ARIMA(p,d,q) model with intercept μ for $Y_{1:N}$ is

[S4]
$$\phi(B)[(1-B)^dY_n - \mu] = \psi(B)\epsilon_n$$
,

where $\{\epsilon_n\}$ is a white noise process; $\phi(x)$ and $\psi(x)$ are ARMA polynomials.

• It is unusual to fit an ARIMA model with d > 1.

We see that an ARIMA(p,1,q) model is almost a special case of an ARMA(p+1,q) model with a unit root to the AR(p+1) polynomial.
 Question 6.4. Why "almost" not "exactly" in the previous statement?

12 / 31

Two reasons to fit an ARIMA(p,d,q) model with d>0

- 1. You may really think that modeling the differences is a natural approach for your data. The S&P 500 stock market index analysis in Chapter 3 is an example of this, as long as you remember to first apply a logarithmic transform to the data.
- 2. Differencing often makes data look "more stationary" and perhaps it will then look stationary enough to justify applying the ARMA machinery.
 - We should be cautious about this second reason. It can lead to poor model specifications and hence poor forecasts or other conclusions.
 - The second reason was more compelling in the 1970s and 1980s.
 Limited computing power resulted in limited alternatives, so it was practical to force as many data analyses as possible into the ARMA framework and use method of moments estimators.

Practical advice on using ARIMA models

- ARIMA analysis is relatively simple to do. It has been a foundational component of time series analysis since the publication of the influential book "Time Series Analysis" (Box and Jenkins, 1970) which developed and popularized ARIMA modeling.
- A practical approach is:
 - 1. Do a competent ARIMA analysis.
 - 2. Identify potential limitations in this analysis and remedy them using more advanced methods.
 - 3. Assess whether you have in fact learned anything from (2) that goes beyond (1).

The SARIMA $(p, d, q) \times (P, D, Q)$ model

Combining integrated ARMA models with seasonality, we can write a general SARIMA $(p,d,q) \times (P,D,Q)_{12}$ model for nonstationary monthly data, given by

[S5]
$$\phi(B)\Phi(B^{12})[(1-B)^d(1-B^{12})^DY_n - \mu] = \psi(B)\Psi(B^{12})\epsilon_n$$
,

where $\{\epsilon_n\}$ is a white noise process, the intercept μ is the mean of the differenced process $\{(1-B)^d(1-B^{12})^DY_n\}$, and we have ARMA polynomials $\phi(x)$, $\Phi(x)$, $\psi(x)$, $\Psi(x)$ as in model [S1].

• The SARIMA $(0,1,1) \times (0,1,1)_{12}$ model has often been used for forecasting monthly time series in economics and business. It is sometimes called the **airline model** after a data analysis by Box and Jenkins (1970).

Modeling trend with ARMA noise

• A general **signal plus noise** model is

[S6]
$$Y_n = \mu_n + \eta_n$$
, where $\{\eta_n\}$ is a stationary, mean zero stochastic process, and μ_n is

- the mean function. • If, in addition, $\{\eta_n\}$ is uncorrelated, then we have a **signal plus white noise** model. The usual linear trend regression model fitted by least
- squares in Chapter 2 corresponds to a signal plus white noise model.
 We can say signal plus colored noise if we wish to emphasize that
- we're not assuming white noise.
 Here, signal and trend are used interchangeably. In other words, we are assuming a deterministic signal.
- At this point, it is natural for us to consider a signal plus ARMA(p,q) noise model, where $\{\eta_n\}$ is a stationary, causal, invertible ARMA(p,q) process with mean zero.
- As well as the p+q+1 parameters in the ARMA(p,q) model, there will usually be unknown parameters in the mean function.

Linear regression with ARMA errors

 When the mean function (also known as the trend) has a linear specification,

$$\mu_n = \sum_{k=1}^K Z_{n,k} \beta_k,\tag{3}$$

the signal plus ARMA noise model is known as **linear regression** with **ARMA errors**.

• Writing Y for a column vector of $Y_{1:N}$, μ for a column vector of $\mu_{1:N}$, η for a column vector of $\eta_{1:N}$, and Z for the $N \times K$ matrix with (n,k) entry $Z_{n,k}$, we have a general linear regression model with correlated ARMA errors.

$$Y = Z\beta + \eta. (4)$$

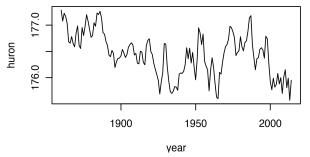
• From (4), $Y-Z\beta$ is ARMA so likelihood evaluation and numerical maximization can build on ARMA methods.

Inference for the linear regression model with ARMA errors

- Maximum likelihood estimation of $\theta = (\phi_{1:p}, \psi_{1:q}, \sigma^2, \beta)$ is a nonlinear optimization problem.
- Fortunately, arima in R can do it for us.
- As usual, we should look out for signs of numerical problems.
- Data analysis for a linear regression with ARMA errors model, using the framework of likelihood-based inference, is procedurally similar to fitting an ARMA model.
- ullet This is a powerful technique, since the covariate matrix Z can include other time series. We can evaluate associations between different time series.
- With appropriate care (since association is not causation) we can draw inferences about mechanistic relationships between dynamic processes.

Evidence for systematic trend in Lake Huron level?

We return to annual data, say the January level, to avoid seasonality.



- Visually, there seems some evidence for a decreasing trend, but there are also considerable fluctuations.
- Let's test for a trend, using a regression model with Gaussian AR(1) errors. We have previously found that this is a reasonable model for these data.
- First, for comparison, we fit a null model with no trend.

```
fit0 <- arima(huron, order=c(1,0,0))
```

- We compare fit0 with a linear trend model, coded as fit1.
- The covariate is included via the xreg argument.

```
fit1 <- arima(huron, order=c(1,0,0), xreg=year)</pre>
```

Setting up a formal hypothesis test

- To talk formally about these results, we must down a model and some hypotheses.
- ullet Writing the data as $y_{1:N}^*$, collected at years $t_{1:N}$, the model we have fitted is

$$(1 - \phi_1 B)(Y_n - \mu - \beta t_n) = \epsilon_n, \tag{5}$$

where $\{\epsilon_n\}$ is Gaussian white noise with variance σ^2 . Our null model is

$$H^{\langle 0 \rangle} : \beta = 0, \tag{6}$$

and our alternative hypothesis is

$$H^{\langle 1 \rangle} : \beta \neq 0. \tag{7}$$

Question 6.5. How do we test $H^{(0)}$ against $H^{(1)}$?

- Construct two different tests using the R output above.
- Which test do you think is more accurate, and why?

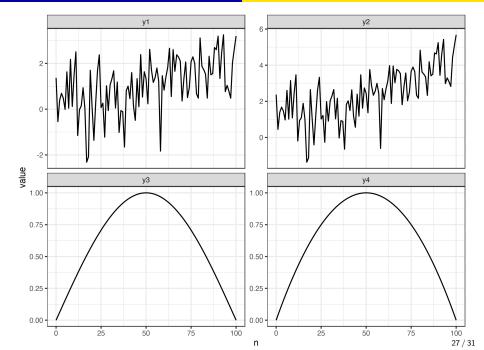
Question 6.6. How would you check whether your preferred test is indeed better? What other supplementary analysis could you do to strengthen your conclusions?

Augmented Dickey-Fuller test

- A time series model is said to have a unit root if its first difference is stationary.
- For linear time series models, this corresponds to a (1-L) factor in the AR specification, and hence an AR polynomial root of 1.
- A unit root corresponds to a "stochastic trend" (formally an oxymoron) described by a random walk.
- The augmented Dickey-Fuller (ADF) test has this null hypothesis.
- ADF test is sometimes erroneously called a test for "stationarity".
 However, many non-stationary models remain non-stationary after any amount of differencing. For example, models with non-polynomial trend.
- Assessing evidence for a trend is better than applying an ADF test for a unit root if a model with trend is statistically (or scientifically) preferable to a model with a random walk.

Question 6.7. Which of y1, y2, y3, y4 do you think will be considered non-stationary by a unit root test?

```
n <- 0:100
epsilon <- rnorm(n=length(n),mean=0,sd=1)
y1 <- 2*n/100 + epsilon
y2 <- exp(1.5*n/100) + epsilon
y3 <- sin(2*pi*n/200)
y4 <- n*(100-n)/2500</pre>
```



Result of adf.test()

```
data: y1
Dickey-Fuller = , Lag order = 4 , p-value = 0.01
Alternative hypothesis: stationary
data: y2
Dickey-Fuller = , Lag order = 4 , p-value = 0.03160508
Alternative hypothesis: stationary
data: y3
Dickey-Fuller = , Lag order = 4 , p-value = 0.01
Alternative hypothesis: stationary
data: v4
Dickey-Fuller = , Lag order = 4 , p-value = 0.5505892
Alternative hypothesis: stationary
```

When to use adf.test()

- If you are interested in a null hypothesis of a random walk against an alternative of a stationary ARMA model, then this test is applicable.
- Generalizations of ADF claim to identify random walks on top of a nonlinear trend, but distinguishing these two options is hard and beyond our scope.
- Most midterm projects benefit from avoiding the ADF test and focusing on a direct investigation of the evidence for trend or other non-stationary behavior.

Further reading

- Section 3.9 of Shumway and Stoffer (2017) discusses SARIMA modeling.
- Section 3.8 of Shumway and Stoffer (2017) introduces regression with ARMA errors.

References and Acknowledgements

Box GEP, Jenkins GM (1970). *Time Series Analysis: Forecasting and Control*. First edition. Holden–Day, San Francisco.

Shumway RH, Stoffer DS (2017). *Time Series Analysis and its Applications: With R Examples.* 4th edition. Springer.

- Compiled on February 3, 2025 using R version 4.4.2.
- Licensed under the Creative Commons Attribution- NonCommercial license. Please share and remix non-commercially, mentioning its origin.
- We acknowledge previous versions of this course.