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1 Frequency components

Frequency components of a time series

1. A time series dataset (like any other sequence of numbers) can be written as a sum of sine and
cosine functions with varying frequencies.

2. This is called the Fourier representation or Fourier transform of the data.

3. The coefficients corresponding to the sine and cosine at each frequency are called frequency
components of the data.

4. Looking at which frequencies have large and small components can help to identify appropriate
models.

5. Looking at the frequency components present in our models can help to assess whether they are
doing a good job of describing our data.

1.1 Eigenvalues and eigenvectors of a stationary covariance matrix

What is the spectrum of a time series model?

• We begin by reviewing eigenvectors and eigenvalues of covariance matrices. This eigen decompo-
sition also arises elsewhere in statistics, e.g. principle component analysis.
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• A univariate time series model is a vector-valued random variable Y1:N which we suppose has a
covariance matrix V which is an N ×N matrix with entries Vmn = Cov(Ym, Yn).

• V is a non-negative definite symmetric matrix, and therefore has N non-negative eigenvalues
λ1, . . . , λN with corresponding eigenvectors u1, . . . , uN such that

V un = λnun. (1)

• A basic property of these eigenvectors is that they are orthogonal, i.e.,

u
t
mun = 0 if m ̸= n. (2)

• We may work with normalized eigenvectors that are scaled such that u
t
nun = 1.

• We can also check that the components of Y in the directions of different eigenvectors are uncor-
related.

• Since Cov(AY,BY ) = ACov(Y, Y )B
t
, we have

Cov(u
t
mY, u

t
nY ) = u

t
mCov(Y, Y )un

= u
t
mV un

= λnu
t
mun

=

{
λn if m = n
0 if m ̸= n

For the last equality, we have supposed that the eigenvectors are normalized.

• If we knew V , we could convert the model to a representation where the observable random
variables are uncorrelated.

• Transforming the data into its components in the directions of the eigenvectors of the model allows
us to use an uncorrelated model. In the Gaussian case, we have independence.

Eigenvectors for the covariance matrix of an AR(1) model with N = 100 and ϕ = 0.8

N <- 100; phi <- 0.8; sigma <- 1

V <- matrix(NA,N,N)

for(m in 1:N) for(n in 1:N) V[m,n]<-sigma^2*phi^abs(m-n)/(1-phi^2)

V_eigen <- eigen(V,symmetric=TRUE)

matplot(V_eigen$vectors[,1:5],type="l")

matplot(V_eigen$vectors[,6:9],type="l")
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Eigenvalues for the covariance matrix of an AR(1) model with N = 100 and ϕ = 0.8

• We see that the eigenvectors, plotted as functions of time, look like sine wave oscillations.

• The eigenvalues are

round(V_eigen$values[1:9],2)

[1] 24.59 23.44 21.73 19.70 17.57 15.51 13.61 11.91 10.42

• We see that the eigenvalues are decreasing. For this model, the components of Y1:N with highest
variance correspond to long-period oscillations.

• Are the sinusoidal eigenvectors a special feature of this particular time series model, or something
more general?

The eigenvectors for a long stationary time series model

• Suppose {Yn,−∞ < n <∞} has a stationary autocovariance function γh. Write Γ for the infinite
array with entries

Γm,n = γm−n for all integers m and n. (3)

• To focus on concepts over technical details, we assume infinite sums converge and order of sum-
mation can be exchanged, so infinite arrays behave like finite matrices.

• An eigenvector for Γ is a sequence u = {un,−∞ < n <∞} with corresponding eigenvalue λ such
that

Γu = λu, (4)

or, writing out the matrix multiplication explicitly,

∞∑
n=−∞

Γm,nun = λum for all m. (5)

• We look for a sinusoidal solution, un = e2πiωn, where ω is cycles per unit time.

∑∞
n=−∞ Γm,nun =

∑∞
n=−∞ γm−nun

=
∑∞

h=−∞ γhum−h setting h = m− n

=
∑∞

h=−∞ γhe
2πiω(m−h)

= e2πiωm
∑∞

h=−∞ γhe
−2πiωh

= umλ(ω) for λ(ω) =
∑∞

h=−∞ γhe
−2πiωh

Question 7.1. Why does this calculation show that un(ω) = e2πiωn is an eigenvector for Γ for any
choice of ω.
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• The eigenvalue at frequency ω is

λ(ω) =

∞∑
h=−∞

γh e
−2πiωh (6)

• Viewed as a function of ω, this is called the spectral density function.

• λ(ω) is the Fourier transform of γh.

• An integral version of (6) is used in applied math and engineering:

λ(ω) =

∫ ∞

−∞
γ(x) e−2πiωx dx. (7)

• We obtain (6) from (7) when γ(h) has a point mass γh when h is an integer, and γ(x) = 0 for
non-integer x.

• It was convenient to do this calculation with complex exponentials. However, writing

e2πiωn = cos(2πωn) + i sin(2πωn), (8)

and noting that γh is real, we see that the real and imaginary parts of λ(ω) =
∑∞

h=−∞ γhe
−2πiωh

give us two real eigenvectors, cos(2πωn) and sin(2πωn).

Question 7.2. Review: how would you demonstrate the correctness of the identity e2πiω = cos(2πω)+
i sin(2πω).

• Assuming that this computation for an infinite sum represents a limit of increasing dimension for
finite matrices, we have found that the eigenvectors for any long, stationary time series model are
approximately sinusoidal.

• For the finite time series situation, we only expect N eigenvectors for a time series of length N .
We have one eigenvector for ω = 0, two eigenvectors corresponding to sine and cosine functions
with frequency

ωn = n/N, for 0 < n < N/2, (9)

and, if N is even, a final eigenvector with frequency

ω(N/2) = 1/2. (10)

• These sine and cosine vectors are the Fourier basis.

• The time series y∗1:N is the time domain representation of the data. Transforming to the Fourier
basis gives the frequency domain representation.
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2 The Fourier transform

Frequency components and the Fourier transform

• The frequency components of Y1:N are the components in the directions of these eigenvectors,
given by

Cn =
1√
N

N∑
k=1

Yk cos(2πωnk) for 0 ≤ n ≤ N/2,

Sn =
1√
N

N∑
k=1

Yk sin(2πωnk) for 1 ≤ n ≤ N/2.

• Similarly, the frequency components of data y∗1:N are

cn =
1√
N

N∑
k=1

y∗k cos(2πωnk) for 0 ≤ n ≤ N/2,

sn =
1√
N

N∑
k=1

y∗k sin(2πωnk) for 1 ≤ n ≤ N/2.

• The frequency components of the data can be written as real and imaginary parts of the discrete
Fourier transform,

dn =
1√
N

N∑
k=1

y∗ke
−2πikn/N

= cn − isn

• The normalizing constant of 1/
√
N is convenient for a central limit theorem.

• Various choices about signs and factors of 2π,
√
2π and

√
N can be made in the definition of the

Fourier transform. For example, the fft command in R does not include this constant.

• fft is an implementation of the fast Fourier transform algorithm, which enables computation
of all the frequency components with order N log(N) computation. Computing the frequency
components may appear to require a matrix multiplication involving order N3 additions and
multiplications. When N = 105 or N = 106 this difference becomes important!

• The first frequency component, C0, is a special case, since it has mean µ = E[Yn] whereas the
other components have mean zero.

• In practice, we subtract a mean before computing the frequency components, which is equivalent
to removing the frequency component for frequency zero.

• The frequency components (C0:N/2, S1:N/2) are asymptotically uncorrelated. They are constructed

as a sum of a large number of terms, with the usual 1/
√
N scaling for a central limit theorem. So,

it may not be surprising that a central limit theorem applies, giving asymptotic justification for
the following normal approximation.

• Moving to the frequency domain (i.e., transforming the data to its frequency components) has
decorrelated the data. Statistical techniques based on assumptions of independence are appro-
priate when applied to frequency components.
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2.1 A normal approximation

Normal approximation for the frequency components

• (C1:N/2, S1:N/2) are approximately independent, mean zero, Normal random variables with

Var(Cn) = Var(Sn) ≈ 1/2λ(ωn). (11)

• C0

/√
N is approximately Normal, mean µ, independent of (C1:N/2, S1:N/2), with

Var(C0

/√
N) ≈ λ(0)

/
N. (12)

• It follows from the normal approximation that, for 1 ≤ n ≤ N/2,

C2
n + S2

n ≈ λ(ωn)
χ2
2

2
, (13)

where χ2
2 is a chi-squared random variable on two degrees of freedom.

• Taking logs, we have
log

(
C2

n + S2
n

)
≈ log λ(ωn) + log(χ2

2/2). (14)

3 The periodogram to estimate the spectral density

The periodogram

• The chi-squared property in (13) motivates the periodogram,

In = cn
2 + sn

2 =
∣∣dn∣∣2 (15)

as an estimator of the spectral density.

• From (14), log In is as an estimator of the log spectral density with a convenient statistical property:
asymptotically independent, identically distributed errors at each Fourier frequency.

• Therefore, a signal-plus-white-noise model is appropriate for estimating the log spectral density
using the log periodogram.

• The periodogram is an inconsistent estimator of the spectrum. We can smooth the periodogram
to borrow strength between nearby frequencies.

Interpreting the spectral density as a power spectrum

• The power of a wave is proportional to the square of its amplitude.

• The spectral density gives the mean square amplitude of the components at each frequency, and
therefore gives the expected power.

• The spectral density function can therefore be called the power spectrum.

Question 7.3. Consider the AR(1) model, ϕ(B)Yn = ϵn with ϕ(B) = 1− ϕ1B and ϵn ∼ WN(σ2), i.e.,
white noise with variance σ2. Show that the spectrum of Y is

λ(ω) =
σ2∣∣ϕ(e2πiω)∣∣2 =

σ2

1 + ϕ21 − 2ϕ1 cos(2πω)
. (16)
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ARMA models have a rational spectrum

• The calculation for the AR(1) model generalizes. We give the result without proof.

• Let Yn be an ARMA(p,q) model, ϕ(B)Yn = ψ(B)ϵn with ϵn ∼ WN(σ2). The spectrum of Y is

λ(ω) = σ2

∣∣∣∣∣ψ
(
e2πiω

)
ϕ
(
e2πiω

) ∣∣∣∣∣
2

. (17)

• The so-called rational spectrum of ARMA models is computationally convenient.

• A stationary, causal ARMA model cannot have roots on the unit circle. If a root approaches the
unit circle, the denominator in (17) becomes close to zero.

• The special case of ϕ(x) = ψ(x) = 1 gives λ(ω) = σ2. White noise has a constant spectrum,
matching the analogy that white light has uniform intensity across the visible light spectrum.

4 Frequency domain data analysis

Michigan winters revisited: Frequency domain methods

y <- read.table(file="ann_arbor_weather.csv",header=TRUE)

head(y[,1:9],3)

Year Low High Hi_min Lo_max Avg_min Avg_max Mean Precip

1900 -7 50 36 12 18 34.7 26.3 1.06

1901 -7 48 37 20 17 31.8 24.4 1.45

1902 -4 41 27 11 15 30.4 22.7 0.60

• We have to deal with the NA measurement for 1955. A simple approach is to replace the NA by
the mean.

• What other approaches can you think of for dealing with this missing observation?

• What are the strengths and weaknesses of these approaches?

low <- y$Low

low[is.na(low)] <- mean(low, na.rm=TRUE)

4.1 Smoothing the periodogram

spectrum(low, main="Unsmoothed periodogram")
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• To smooth, we use the default periodogram smoother in R

spectrum(low, spans=c(3,5,3), main="Smoothed periodogram",

ylim=c(15,100))

• The bar is a 95% pointwise confidence interval which we can slide to any frequency of interest.

• The chi-squared property (14) means this CI is the same width for each frequency, on the log
scale. Note it is asymmetric.

Question 7.4. What is the default periodogram smoother in R?

Question 7.5. How should we use it?
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Question 7.6. Why is that default chosen?

4.2 Tapering before calculating the periodogram

More details on computing and smoothing the periodogram

• To see what R actually does to compute and smooth the periodogram, type ?spectrum.

• This will lead you to type ?spec.pgram.

• You will see that, by default, R removes a linear trend, fitted by least squares. This may often be
a sensible thing to do. Why?

• You will see that R then multiplies the data by a quantity called a taper, computed by spec.taper.

• The taper smooths the ends of the time series and removes high-frequency artifacts arising from
an abrupt start and end to the time series.

• Formally, from the perspective of the Fourier transform, the time series takes the value zero outside
the observed time points 1 :N . The sudden jump to and from zero at the start and end produces
unwanted effects in the frequency domain.

The default taper in R smooths the first and last p = 0.1 fraction of the time points, by modifying the
detrended data y∗1:N to tapered version z1:N defined by

zn =

 y∗n
(
1− cos(πn/Np)

)
/2 if 1 ≤ n < Np

y∗n if Np ≤ n ≤ N(1− p)
y∗n

(
1− cos(π[N + 1− n]/Np)

)
/2 if N(1− p) < n ≤ N

plot(spec.taper(rep(1,100)),type="l",

main="Default taper in R, for a time series of length 100")

abline(v=c(10,90),lty="dotted",col="red")

4.3 Fitting an AR model to estimate the spectrum

Spectral density estimation by fitting a model
Another standard way to estimate the spectrum is to fit an AR(p) model with p selected by AIC.

spectrum(low,method="ar",

main="Spectrum estimated via AR model picked by AIC")
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Units of frequency and period

• When we call ω the frequency in cycles per unit time, we really mean cycles per unit observa-
tion.

• Suppose the time series consists of equally spaced observations, with tn − tn−1 = ∆ years. Then,
the frequency is ω/∆ cycles per year.

• The period of an oscillation is the time for one cycle,

period =
1

frequency
. (18)

• When the observation intervals have a time unit (years, seconds, etc) we usually use that unit for
the period, and its inverse for the frequency.

Further reading

• Sections 4.1 to 4.3 of Shumway and Stoffer (2017) cover similar topics to this chapter.

Acknowledgments

• Compiled on February 5, 2025 using R version 4.4.2.

• Licensed under the Creative Commons Attribution-NonCommercial license.
Please share and remix non-commercially, mentioning its origin.

• We acknowledge previous versions of this course.

References

Shumway RH, Stoffer DS (2017). Time Series Analysis and its Applications: With R Examples. 4th
edition. Springer.

10

http://creativecommons.org/licenses/by-nc/4.0/
https://ionides.github.io/531w24/acknowledge.html

	Frequency components
	Eigenvalues and eigenvectors of a stationary covariance matrix

	The Fourier transform
	 A normal approximation

	The periodogram to estimate the spectral density
	Frequency domain data analysis
	Smoothing the periodogram
	Tapering before calculating the periodogram
	Fitting an AR model to estimate the spectrum


