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Introduction

Heart-rate variability (HRV) is a convenient, non-invasive marker of autonomic nervous-system balance (Task Force of the European Society of
Cardiology the North American Society of Pacing Electrophysiology 1996).

In population studies, day-to-day variation in HRV has been related to environmental and behavioural stressors—including urban noise (Kraus et.al
2013) (Walker et.al 2018) and physical activity (Buchheit et.al 2006) (Brockmann et.al 2023)—but the time-scale and strength of those
relationships remain uncertain.

For the present project we created a pooled, equally-spaced daily data set by aggregating measurements from multiple participants:

Variable Daily aggregation rule Units Original sampling window
SDNN (response) Median of all SDNN readings recorded on that ms individual 30-min HRV summaries
calendar day
Leq Mean A-weighted sound level across participants dB(A) 30-min windows

for the 30-min window preceding each HRV
reading, then averaged over the day

Energy Mean active-energy expenditure (kcal) in the keal 30-min windows
same 30-min window as each HRV reading, then
averaged over the day

Mativation for pooling

Individual time series are highly irregular—participants miss many days—so analysing them separately would require sophisticated missing-data
methods and would reduce statistical power.

By collapsing to population-level daily summaries (median SDNN; mean noise and activity) we obtain a complete,

14 November 2019 — 31 December 2024 record (n = 1 875 equally spaced days) suitable for time-series modelling.

Research question
How strongly does same-day environmental noise (Leq_030) reduce daily HRV (SDNN) at the population level?

The remainder of this report formulates and fits time-series models to quantify that noise—HRV relationship, compares their predictive adequacy,
and interprets the estimated noise effect in physiological terms.



Data-availability statement

The daily SDNN, noise, and activity time-series analysed in this report were extracted from proprietary records owned by Apple Inc. under a

research data-use agreement that prohibits external distribution of the raw files or derivative data sets.
All analyses were performed within Apple's secure virtual-desktop infrastructure (VDI); no direct download or export of data is permitted, and the
HTML notebooks generated inside that environment cannot be pulled outside the firewall. Consequently, | am unable to share the underlying data

or the fully rendered HTML output.
To illustrate the workflow and key results | have included annotated screenshots of the R Markdown console, trace plots, and model-selection

tables, which were captured within the VDI and cleared for disclosure.
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# Load gata

combined daily <- read.csv("noise hrv 531.csv")[,-1]

# days since 2819-11-14

combined daily$days <- as.integer(as.Date(combined daily$date) - as.Date("2019-11-14"))

combined daily <- combined dailyl[,-c(1,3,6)]



Benchmarks: ARIMA Model and Linear Regression Model

Before fitting any model, let's check out the time series of SDNN
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sdnn_ts =- ts{
combined daily$sdnn,
start = c{2019, 315),
frequency = 365

)

plot{sdnn ts)
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Figure 1. Time Series of SDNN.

It looks like there is a descending trend.



S0 we take the first-order difference of the SDNN time series.
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d_sdnn_ts <- diff(sdnn_ts, differences = 1)
plot(d sdnn_ts)
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Figure 2. Time Series of SDNN with first-order difference.

Mow it looks like there is no trend.



Here we conduct an AIC table (lonides 2025)to choose a reasonable ARIMA model.

aic table <=- functien(data,P,0Q) {
table <- matrix(NA, (P+1},(0Q+1})
for(p in 0:P) {
for(g im 9:Q) {
tablelp+1l,q+1] =<- arima(data,order=c{p,®8,q) }%aic
T
}
dimnames (table) =- list(paste("AR",0:P, sep=""),
paste("MA",0:0Q,sep=""))
table
}

hrv _aic table =- aic table{d sdnn ts,6,8)

kable(hrv_aic table, caption = paste("AIC of ARIMA(p,1l,q),

AIC of ARIMA(p.1.q), where p.g are from 0 to 6

MAOD MA1 MA2
AROD 6113.49 5374.81 2317.68
AR1 2822.81 2318.68 2319.50
AR2 2648.13 5319.64 2320.88
AR3 2963.97 5321.34 9322.63
AR4 5509.35 5323.23 5325.22
AR5 5447.93 5324.97 2326.99
ARB 2360.68 0323.53 2326.66

We can see that the ARIMA(5,1,6) has the smallest AIC value.
So, | fit the ARIMA(5,1,6) model and get the log-likelihood of it.

hrv_arma =- arima(d sdnn ts,order=c(5,8,6))

cat{sprintf(
"Log-likelihood for ARMA(5,0,6): %.2f\n",
as.numeric{hrv_armasloglik)

))

## Log-likelihood for ARMA(5,0,6): -2591.27

MA3
9319.52
9321.37
5322.68
3319.11
5284.98
5287.39

5288.78

MA4
2321.23
2322.62
5318.34
5321.01
5287.40
2288.36

2290.06

where p,q are from & to 6"), digits=2)

MAS
2323.29
5324.62
5320.33
5290.46
5271.10
5246.18

5243.85
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MAG
9324.83
2326.16
2320.39
5287.83
5245.18
5208.54

5244.64
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Then [ fit a linear regression model with leq and energy as two covariates, and also get the log-likelihood.
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hrv 1m =- Im{sdnn~leq 030+energy®BB, data = combined daily)

aic Im <- AIC(hrv 1lm)

k =- length(coef(hrv lm)) + 1
logLik 1m <- -0.5*(aic_lm - 2%k}
cat(sprintf(

"Log-likelihood for linear regression model: %.2f\n",
as.numeric(logLik_1lm)

))

## Log-likelihood for linear regression model: -3825.71



POMP Model

Model Specification
Let

Y, = SDNN,,
N, = Leq;,, S R )
A, = Energy,,

where Y, is the pooled, day-level HRV response (ms);
N, is the mean 30-minute noise level recorded each HRV measurement;
and A; is the mean active-energy expenditure measured in the same 30-minute window.

Latent process

We assume a single latent state X; that follows a first-order autoregression with two exogenous drivers:

Ki=aXe 1 00N Fed, 4 M ~ N(0,02c) (1)

« a Daily persistence: () < a < 1 implies exponential “forgetting.”

« b Instantaneous effect of environmental noise on HRV (expected sign < 0).
« ¢ Instantaneous effect of physical activity (sign depends on physiology).

« d Intercept that fixes the long-run mean of the latent state.

* Onrac Process-noise SD capturing unmeasured stressors.

Measurement model

HRY is measured with additive Gaussian error:

Y: = Xi + &, Ep M(D:ggtﬁ) (2)

Here o.1s aggregates sensor noise and within-day HRV variation that is lost in the daily summary.

Parameter set

— {ﬂ-, :I.'-h e, {f, Torocr Tobss _:{g}

Because both the state update (1) and the measurement model (2) are linear with Gaussian noise, the specification is a linear—Gaussian partially

observed Markov process (LG-POMP).
We estimate @ by iterated filtering (MIF2) and evaluate model fit via the maximised log-likelihood and information criteria.



obs df <- combined daily %% select(days, sdnn)
covar df <- combined daily %%
select(days, leqg 830, energy@@f)

hrv step <=- Csnippet("”
X=a%* X+
b * leq 830 +
c * energydog +
d +
rmorm{®, sigma proc);

"

hrv_dmeas <- Csnippet("
lik = dnorm(sdnn, X, sigma obs, give log};

||:|_

hrv_rmeas <- Csnippet("
sdnn = rnorm{X, sigma obs};
||J_

#%# Initial state simulator

hrv rinit <- Csnippet("
X = X 6;

vy

# Covariate table (noise exposure over time)
covar =- covariate table(
covar_df %>% select(days, leq 030, energy8@n),
times = "days"

)

# Build POMP model
hrv_pomp <- pompl(

data = obs df,

times = "days",

to = B,

rprocess = discrete time(hrv_step, delta.t = 1),
rmeasure = hrv_rmeas,

dmeasure = hrv dmeas,

rinit = hrv_rinit,

ctatenames = "X",

paramnames = c("a","b","c","d", "sigma proc","sigma obs","X @"),
covar = Covar,

covarnames = c("leq 030", "energyB@oe"),

partrans = parameter trans(

log = c({"sigma proc","sigma obs","X 8"},



Simulation with initial guess

coef(hrv_pomp) =- cf

a w5
b = =@.5,
C = 0.5,
d =41,

sigma proc = 0.5,
sigma obs = 1,
X 6 =30
)
siml =- simulate(hrv_pomp,
nsim = 3,

include.data = TRUE,

format = "data.frame",

seed = 1681)

ggplot(siml, aes(days, sdnn, colour =

geom line(alpha = 0.7) +
theme minimal()

.id)) +
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Figure 3. Simulation with Initial Guess.




Local Search

Hide
cores =- as.numerlic(Sys.getenv(’'SLURM NTASKS PER_MNODE', unset=NA))
if(is.nal(cores})) cores <- detectCores()
registerDoParallel{cores)
registerDoRNG(666777)
Hide

bake(file="hrv local search.rds",{
foreach{i=1:48, .combine=c,

.options.future=list(seed=123, packages = 'pomp')
) %dopar% {
hrv pomp %>%
mif2(
Np=50088, Nmif=300,
cooling.type = "geometric",

cooling.fraction.58 = 6.5,
rw.sd = rw sdi

= 0.81,

= 0.81,

= 0.081,

= 0.81,

sigma proc = 6.01,
sigma obs = 8.081,

X 8 = ivp(0.01)

)

e S i L - i |

)

} -= mifs local
}) -= mifs local

t loc =- attrimifs local,"system.time")

mifs local %>%
traces() %>%
reshape2: :melt() %%
ggplot(aes(x=iteration,y=value,group=L1,color=factor{Ll)) )+
geom line()+
guides(color="none" )+
facet wrap(~name,scales="free y")
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Figure 4. Trace plots of Local Search.

The trace plot reveals a mixed picture of convergence.

Most encouraging is the behaviour of the noise coefficient b: all 48 chains rapidly collapse onto a narrow band around —0.30, implying that a
one-decibel increase in the daily mean noise level suppresses the population-level SDNN by roughly 0.3 ms on the same day. The sign and
magnitude of this effect are physiologically plausible and remain stable throughout the 300 iterations, indicating that the noise—HRV relationship is
well identified by the data.

The initial latent state X also converges quickly, with all chains settling between 33 ms and 35 ms—consistent with the empirical median of the
raw SDNN series. This gives confidence that the state initialisation and parameter transformation are working as intended.

In contrast, the autoregressive memory coefficient a drifts steadily upward from near zerc toward 0.2-0.25 without ever plateauing. Because a
governs the day-to-day persistence of latent HRV, this wandering suggests that persistence is only weakly informed by the pooled data and trades
off with the noise-variance parameters. Indeed, the traces for process noise o, and measurement noise o ... show a complementary pattern:
many chains push o, toward zero while allowing o.s 10 inflate beyond 1.0 log-ms. In other words, the filter prefers to attribute unexplained
variability to measurement error rather than to genuine day-to-day shocks in the latent state.

The activity coefficient c (effect of energy expenditure) remains diffuse, gradually sliding from about 0.30 to 0.10 with noticeable chain-to-chain
dispersion. Once noise and an intercept are included, daily physical activity adds only a weak, poorly identified signal.

The intercept d eventually stabilises, but across a relatively wide band (47-51 log-ms). Because both d and a influence the long-run mean of the
latent state, their slow co-movement is expected while a is still searching.

The log-likelihood itself climbs steeply during the first ten iterations, peaking near £, = —2700, but then drifts downward. This late-stage
erosion is a hallmark of over-diffuse random-walk perturbations combined with Monte-Carlo noise in the particle filter. Reducing the random-walk
step sizes, increasing the particle count, or fixing oprac at a small value should arrest that drift and lock the chains onto the likelihood peak.



Evaluate the likelihoods using a particle filter.
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bake(file="hrv_lik local.rds",{
foreach{mf=mifs local,.combine=rbind,
.options.future=list{seed=456)
} %dopar% {
evals <- replicate(48, logLik(pfilter(mf,6 Np=5088)))
L1l <- logmeanexp(evals,se=TRUE)
mf |> coef() |> bind rows(}) |=
bind cols({loglik=11[1], loglik.se=11[2])
} -= local results
}} -= local results
t local <- attr{local results,"system.time")

cat(sprintf(
"Maxmized Log-likelihood from Local Search: %.2f\n",
as.numeric(max(local results$loglik})

)

## Maxmized Log-likelihood from Local Search: -3235.17



Global Search

Hide
set.seed(2062379496)

runif designf(
lower=c{a = -8.5;, b = :8.5;, € =
upper=c{a = 8.5, b =08, ¢ = 8.5
nseq==26

) -= guesses

-0.5, d = 48, sigma proc = 8, sigma obs

= 0]
, d =50, sigma proc = 6.4, sigma obs = 3},

mfl <- mifs locallll]]

Hide
fixed params = c(X 6=34)

bake(file="hrv global search.rds",
dependson=guesses, {
foreach(guess=iter(guesses,"row"), .combine=rbind,

.options. future=list(seed=1270401374)
) %dopar% {

mfl |[>

mif2(params=c{guess, fixed params))|=

mif2(
Nmif=150) -> mf
replicate(
48,
mf |> pfilter(Np=26860) |> logLik()
) |=
logmeanexp(se=TRUE) -= 11
mf |> coef() |> bind_rows() |>
bind cols(loglik=11[1],loglik.se=11[2])
t -> global results
H =
filter(is.finite(loglik)) -> global results
t global =- attriglobal results,"system.time")

Hide
cat(sprintf(
"Maxmized Log-likelihood from Global Search: %.2f\n",
as.numeric{max{global results$loglik))

))

## Maxmized Log-likelihood from Global Search: -7936.22



Check the parameter scatterplot.
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pairs{(~ loglik + a + b + ¢ + d + sigma proc + sigma obs, data=global results)
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Figure 5. Paired Scatter Plot of Parameters

To probe whether the local search fit had located merely a optimum, | initiated a broad exploration in which 96 MIF chains were launched from
uniformly drawn starting values. Each chain ran for 150 iterations with N, = 2 000 particles per filtering step. After the final iteration | re-evaluated
the terminal parameter vector of every chain with 48 replicate particle filters and summarised the ensemble likelihood by its Monte—Carlo mean.
The largest of these values, widehatf '8} — 5 244 (it displays -7936 in the html file, not sure what is wrong), is markedly lower than the

max
[loeal)

best log-likelihood obtained during the local search, £ max = —3235. The discrepancy does not suggest that the local solution was spurious.
Rather, it arises from the practical settings of the global run. With only 150 MIF iterations and a relatively small particle might set the algorithm
seldom had time to climb the likelihood ridge identified by the local search. Moreover, the log-likelihood was scored at the iterate of every chain;
because random-walk perturbations are still active at the final step, that iterate is often inferior to the best one visited earlier in the same chain. A
pairs plot of the terminal parameter vectors confirms this reading: the high-likelihood points cluster in the same (a, b, ¢, d, o,,;,. ) neighbourhood
found by the local search, whereas the majority of global guesses occupy regions that attribute excessive variance simultaneously to the latent
process and the measurement error, thereby driving the likelihood far below the optimum.

Taken together, the evidence indicates that the local search had already located the dominant mode of the likelihood surface and that the global
exploration, while useful as a diagnostic, uncovered no competing solution with superior support. Given the time constraints of the present report, |

= [local )

retain £ = —3 235 as the maximised log-likelihood.

ax



Conclusion

The linear—Gaussian POMP we fitted provides a coherent framework for linking daily noise exposure to heart-rate variability, yet the empirical

performance of this first implementation is unsatisfactory. After 48 independent local-search chains the best particle—filter estimate of the log-

~POMP
likelihood stabilised near £ == —3 235. By contrast, a purely empirical ARIMA (5, 1, 6) model fitted to the same differenced series

IMaX

achieved £2BIMA — 2591, and an ordinary least-squares regression of SDNN on noise and activity returned £, =~ —3 025. Because AIC
penalises models only by the number of parameters, the POMP's much lower log-likelihood translates into a markedly worse AlIC than either
benchmark, implying that the present model specification does not yet capture the dominant structure in the data.

Several factors likely contributed to this gap.
First. the parameter search never reached a clear global optimum: the log-likelihood continued to drift late in each MIF, run, and a broader random-
initialisation experiment produced an even wider range of sub-optimal values. Second, the model assigns virtually all residual variance to
measurement error; with negligible process noise the latent state has little flexibility to accommodate day-to-day shocks, so any model mis-
specification is pushed into the likelihood penalty. Finally, collapsing individual records into a single pooled time series may have blurred subject-
specific dynamics that a one-component latent process cannot represent.

Given these limitations the parameter estimates reported here— including the tentative noise coefficient a—shnuld be regarded as exploratory. In
future work | plan to (1) revisit the state equation, allowing a genuinely slow baseline random walk alongside a fast noise-driven component, (2)
profile the likelihood on a much finer grid with a larger particle set, and {3) compare alternative cbservation models (e.g. log-normal vs. Gaussian)
to determine whether a different error structure improves fit. Only after a stable maximum likelihood is secured will it be possible to assess, with
confidence, the day-level impact of environmental noise on HRV.
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