Quiz 2, STATS/DATASCI 531/631 W25

In class on 4/16, 2:30pm to 3:00pm

This document produces different random quizzes each time the source code generating it is
run. The actual quiz will be a realization generated by this random process, or something
similar.

This version lists all the questions currently in the quiz generator. The actual quiz will have
one question sampled from each of the 6 question categories.

Instructions. You have a time allowance of 30 minutes. The quiz may be ended early if
everyone is done. The quiz is closed book, and you are not allowed access to any notes. Any
electronic devices in your possession must be turned off and remain in a bag on the floor.

For each question, circle one letter answer and provide supporting reasoning. If you run out
of space, you may continue on the back of the page, but please indicate to the reader that you
are doing so.

Q1. Foundations of POMP models

Q8-01.

Consider a model Y7, for data yj. 5, with a latent variable X, 5, and a statistical model defined by a joint
density fy v, .(%o.n: Y133 0). The likelihood function is

L(0) = fy, . (Wi.n: 0)

Are the following identities (A) true for all statistical models; (B) true for general POMP models but not
all models; (C) true for linear Gaussian POMP models but not general POMP models; (D) generally false?
Give a letter answer for each identity.

L(9) = / Pt W 70w 0) Fx, (o 0) diigy (1)
N
LO) =[] fv.v,, Wilvim 150) (2)
n=1
Var{XTH—l | Yl:n} = E{Var{Xn—O—l |Xn} | Y1:7J + Var{E[Xn—O—l |Xn} |Y1:n} (3)

N
L(9) :/ [H fYn\X,,L (yillxn;e)} fXO:N(xO:N;e) dzg. (4)

n=1

Solution. 1(A), 2(A), 3(B), 4(B)
For part 3, we have in general that

Var{U} = E[Var{U|V}] + Var{E[U|V]}. (5)



Such identities hold when everything is conditioned on another variable, so we have
Var{U|Z} = E|Var{U|V, Z}|Z] + Var{ E[U|V, Z] | Z}. (6)
Setting U = X,, .,V =X,,, Z=Y,,,, we have
Var{X, .1 | Yi,} = E[Var{X, ;1 | X, Yo} | Vo] + Var{ E[X,, 11X, Y1) | Vi }- (7)
The POMP model structure assumes X, ,; and Y7, are conditionally independent given X, and so

Va‘r{XrL+1|Y1:rL} = E[Va‘r{XrL+1|Xn} ‘ Yl:n] + Var{E[Xn-ﬁ—l‘X'n,] ‘ Yl:n}' (8)

Q8-02.

Which of the following linear Gaussian POMP model have an observable variable Y, with distribution
matching an ARMA(1,1) model? Here, €,, and 7,, are Gaussian white noise. X, is 1-dimensional in (1) and
2-dimensional in (2) and (3).

A. Only (M3)
B. (M1) and (M2) but not (M3)
C. (M2) and (M3) but not (M1)
D. (M1) and (M3) but not (M2)
E. (M1), (M2) and (M3)
X, = aX,_{+e,
Y, = Xotm, } .
a 1 0
o= o 0>Xn—1+<1>6" } (M2)
Y, = (1,00X,+n,
a 1 1
e 0>Xn1+<b>6" } (M3)
Y, = (1L,0)X,
Solution. E

One way to see (M1) is to calculate in the frequency domain, noting that two stationary Gaussian time series
models with the same spectrum are necessarily equal. X,, is AR(1) and so has spectrum o2 /|1 —aexpiw|* =
0?/(1+ a* — 2acos(w)). 1, has spectrum o7, and so Y, has spectrum

2 02(1 + a?) + 02 — 2a0?ta cos(w
0.2 + O¢ _ 77( ) € e ( ) (9)
T 14 a? — 2acos(w) 1+ a? —2acos(w)
_ (14 b%) — 2bcos(w) (10)
1+ a? — 2acos(w)
where o and b solve
?(1+b%) = o2(1+a?) +a2, (11)
o’ = ao} (12)
Another way to show (M1) is to substitute X,, =Y, —n,, into X, =aX,,_; + ¢, to get
Yn M = a’<Yn71 - nnfl) + €, (13)
Yn - aYnfl = —an,_ + M, + €n- (14)
Notice that this is equivalent to writing
}/n - aY’n—l = ’l/)fn—l + €n5 (15)



where Var(¢,) = Var(n,,) + Var(e,) and ¢ is chosen so that

COV(U}gn—Iv €n—1) = lﬁVar(fn,) = COV(—(“?n—u Mp—1 T en—l) = _avar(nn)' (16)

This calculation checks that the Gaussian model U,y = —an,,_; + 1,, + €, has the same autocovariance as
V., =&, + &, and so the two models are statisticall indistinguishable.

(M2) is the same set of equations as (M1), as seen by setting X, = ( )6(" )

(M3) is the ARMA(1,1) case of the LG-POMP representation of a general ARMA model givein in Chapter
11. Specifically, set X, = ( Ya ), and see that the process model becomes

be
Y, [ aY,_{ +be, 4 +e,
be, ) be,, '

n
Scientifically, our conclusions should not depend on the units of measurement we use, but we can make
errors if we don’t get the details right. Suppose our data are two years of weekly aggregated case reports of
a disease and we have a continuous-time model solved numerically by an Euler timestep of size dt. Which of
the following is a correct explanation of our options for properly implementing this in a pomp object called
po?

Q8-03.

A. The measurement times, time (po), should be in units of weeks, such as 1,2,...,104. The latent process
can be modeled using arbitrary time units, say days or weeks or years. The units of d¢ should match the
time units of the latent process.

B. The measurement times, time (po), should be in units of weeks, such as 1,2,...,104. The latent process
can be modeled using arbitrary time units, say days or weeks or years. The units of dt should be in weeks
(in practice, usually a fraction of a week) to match the units of the measurement times.

C. The measurement times do not have to be in units of weeks. For example, we could use time (po)=1/52,

2/52, ..., 2. The latent process and dt should use the same units of time as the measurement times.
D. The measurement times do not have to be in units of weeks. For example, we could use time (po)=1/52,
2/52, ...,2. The latent process can also use arbitrary units of time, which do not necessarily match the units

of the measurement times. The units of dt should match the units used for the latent process.

E. The measurement times do not have to be in units of weeks. For example, we could use time (po)=1/52,
2/52, ..., 2. The latent process can also use arbitrary units of time, which do not necessarily match the units
of the measurement times. The units of dt should match the units used for the measurement times.

Solution. C

For scientific calculations, you generally have to pick an arbitrary set of units and use it consistently. In
pomp, this means that you have to use the same units for measurement times and within the latent process.
For example, if your measurement times are in days (7,14,...) then rate parameters should have units dayfl.
A latent transition with mean duration 1 week would have corresponding rate 1/ 7day71.

When you report your answers, you can use any appropriate units depending on the scale of the quantity—for
example, mean life expectancy in years, mean infection duration in days, accumulated cases over a week or
a month. Within the computer code, you are advised not to mix units. That is because computers are not
good at representing units; a computer is good at representing a number, say 2.5, but usually our code does
not know if this number corresponds to 2.5 days or weeks or years. 2.5 hours is the same as 150 minutes,
but we can’t just replace 2.5 by 150 in our code and get the same answer. That is in contrast to scientific
work, where every numerical quantity should have its unit attached, and answers of 2.5hr and 150min are
equally correct.

Q8-04.

Let V,, be a Markov process and let W,, = h(V,,) for some function h. Let (X,,,Y,,) be a POMP with latent
process X,, and observed process Y,,. Which of the following statements are true?



i. W,, is a Markov process for all choices of h.
ii. W, is a Markov process for some choices of h.
iii. W,, is not a Markov process for any choice of h.
iv. 'V, =(X,,Y,) and h(X,,,Y,) = X,, then W, is a Markov process.
v. 'V, =(X,,Y,) and h(X,,Y,) =Y, then W, is a Markov process.

A ijivyv

B. ii,iv

C.ii,v

D. iii

E. Some combination other than those listed above

Solution. B

(iv) is true by definition of a POMP model, and this rules out (iii). To see that (v) is not generally true,
consider a Markov chain, X,, on {1,2,3} which cycles 1 — 2 — 3 — 1, with X, being uniform on {1,2,3}.
Let Y, = Aif X, € {1,2} and Y,, = B if X,, = 3. Then, P(Y,,,;, = B|Y,, = A) = 1/2 which is not equal to

n

P(Y, ., =B|Y, =AY, | =A)=1. This example also rules out (i). (ii) is clearly satisfied by the identity

function, h(z) = x, so we are left with (ii) and (iv).

Q2. Likelihood evaluation; the particle filter
Q9-01.

Suppose that 10 replications of a particle filter, each using $1073 $ particles, runs in 15 minutes with no
parallelization. To look for a more precise likelihood evaulation, you consider running 20 replicates, each
with 10% particles. Approximately how many minutes will this take, if you distribute the calculation across
4 cores?

A. 50
B. 60
C. 75
D. 120
E. 300

Solution. C.
Using the linear dependence, also called proportionality, of the computing effort on various algorithmic
parameters, we calculate

15 * (10000/1000) * (20/10) * (1/4)

## [1] 75
Q9-02.

A particle filter is repeated 5 times to evaluate the likelihood at a proposed maximum likelihood estimate,
each time with 10* particles. Suppose the log likelihood estimates are —2446.0, —2444.0, —2443.0, —2442.0,
—2440.0. Which of the following is an appropriate estimate for the log likelihood at this parameter value
and its standard error.

A. Estimate = —2443.0, with standard error 1.0
B. Estimate = —2443.0, with standard error 2.2
C. Estimate = —2443.0, with standard error 5.0
D. Estimate = —2441.4, with standard error 2.2
E. Estimate = —2441.4, with standard error 1.4

Solution. E.
Answers A, B and C estimate using a mean on the log scale. However, the particle filter provides an unbiased
likelihood estimate on a natural scale but not on a log scale. Note that the particle filter also has some bias



for most quantities on a natural scale, which reduces to zero as the number of particles tends to infinity, but
it happens to be unbiased for the likelihood. The standard error for the log of the mean of the likelihoods
can be computed by the delta method or a jack-knife, for example using the logmeanexp function in pomp.

11 <- c(-2446,-2444,-2443,-2442,-2440)
mean(11)

## [1] -2443
sd(11)

## [1] 2.236068
sd(11)/sqrt(length(11))

# [1] 1
pomp: : logmeanexp (11, se=TRUE)

#i# est se
## -2441.422198 1.380688
Q9-03.

Effective sample size (ESS) is one of the main tools for diagnosing the success of a particle filter. If you plot
an object of class pfilterd_pomp (created by applying pfilter to a pomp object), the ESS is displayed.
Suppose one or more time points have low ESS (say, less than 10) even when using a fairly large number of
particles (say, 10*). What is the proper interpretation?

A. There is a problem with data, perhaps an error recording an observation.

B. There is a problem with the model which means that it cannot explain something in the data.

C. The model and data have no major problems, but the model happens to be problematic for the particle
filter algorithm.

D. At least one of A, B, and C.

E. Either A or B or both, but not C. If the model fits the data well, the particle filter is guaranteed to work
well.

Solution. D.

An example of a situation where the model fits the data well, but filtering is hard, arises when the measure-
ment error is small relative to the process noise. In this case, the particles are scattered by the process noise
and very few of them are compatible with the data due to the precise measurement. Thus, almost all the
particles must be discarded as unfeasible given the data, corresponding to a low ESS.

Q9-04.

In a particle filter, a particle that is resampled k times is said to be the parent of these k£ children, The
complete ancestry graph of all the particles is an evolutionary tree for the population of particles. Each
filtering iteration corresponds to a generation of this population process. Darwinian evolution on populations
occurs when individuals with the fittest phenotype reproduce more offspring for the next generation, and
these children inherit the parent’s genotype subject to mutation.

Particle filter Darwinian evolution
(1) Prediction step: simulation (a) Genotype

(2) Filtering step: resampling (b) Fitness

(3) State value, X, ; (¢) Mutation

(4) Measurement density, fy x, (y5,|X, ;) (d) Reproduction

What is the pairing between the particle filter concepts (numbers 1-4) and the analogous evolutionary
concepts (letters a—d).



2b
2a
2d

3c) (4d
3c) (4d
) 3a) (4b
(1d) (2¢) (3a) (4b)

E. A combination not listed above.

\/V\_/
(PN
I —

A. (1a)
B. (1b)
C. (1c
D. (1d) (2

/—\

Solution. C.

Inherited similarities between generations is based on the genotype, which in a POMP model is the Markovian
state. The mutation process that randomly generates the genotype of the child is therefore rprocess,
the state simulation process. The expected number of children depends on the fitness, which here is the
measurement density. The actual number of children is a random process, corresponding to the resampling
of particles.

Q3. Likelihood maximization; iterated filtering
Q10-01.

When carrying out inference by iterated particle filtering, the likelihood increases for the first 10 iterations
or so, and then steadily decreases. Testing the inference procedure on simulated data, this does not happen
and the likelihood increases steadily toward convergence. Which of the following is the best explanation for
this?

A. One or more random walk standard deviations is too large.

B. One or more random walk standard deviations is too small.

C. The model is misspecified, so it does not fit the data adequately.

D. A combination of the parameters is weakly identified, leading to a ridge in the likelihood surface.
E. Too few particles are being used.

Solution. C.
A test on simulated data, when the truth is known, can help pin down an optimization problem. All the
issues other than C can cause inference problems, but likely would cause similar problems on simulated data.

When there is a reproducible and stable phenomenon of decreasing likelihood, it generally indicates that the
unperturbed model is a worse fit to the data than the perturbed model. Recall that the likelihood calculated
by iterated filtering at each iteration corresponds to the model with perturbed parameters rather than the
actual postulated model with fixed parameters. If the perturbed model has higher likelihood, it may mean
that the data are asking to have time-varying parameters. It may also be a signature of any other weakness
in the model that can be somewhat accommodated by perturbing the parameters.

Q10-02.

People sometimes confuse likelihood profiles with likelihood slices. When you read a report claiming to have
computed a profile it can be worth checking whether it is actually computed as a slice. Suppose you read a
figure which claims to construct a profile confidence interval for a parameter p in a POMP model with four
unknown parameters. Which of the following confirms that the plot is, or is not, a properly constructed
profile confidence interval.

A. The CI is constructed by obtaining the interval of rho values whose log likelihood is within 1.92 of the
maximum on a smoothed curve of likelihood values plotted against p.

B. The code (made available to you by the authors as an Rmarkdown file) involves evaluation of the likelihood
but not maximization.

C. The points along the p axis are not equally spaced.

D. The smoothed line shown in the plot is close to quadratic.

E. A and D together.

Solution. B.

If the researchers calculate a sliced likelihood through the MLE and tell you it is a profile, but you are
concerned they might have constructed a slice by mistake, it is hard to know without looking at the code.
(A) is the proper construction of a profile if the points are maximizations over the remaining parameters for



a range of fixed values of rho. However, if the code does not involve maximization over other parameters at
each value of p, it cannot be a proper profile. It could be a slice accidentally explained to be a profile, and
with a confidence interval constructed as if it were a profile.

If there is only one unknown parameter then a slice and a profile are the same thing, and no maximization
is required. This is an unusual situation; there is usually more than one unknown parameter.

Q10-03.

MIF2 convergence diagnostics
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Figure 1: Iterated filtering diagnostic plot
The iterated filtering convergence diagnostics in figure 1 come from a student project investigating the market

value of Gamestop. What is the best interpretation?

A. Everything seems to be working fine. The likelihood is climbing. The replicated searches are giving
consistent runs. The spread of convergence points for o, and H, indicates weak identifability, which is a
statistical fact worth noticing but not a weakness of the model.


https://ionides.github.io/531w21/final_project/project06/blinded.html
https://ionides.github.io/531w21/final_project/project06/blinded.html

B. The consistently climbing likelihood is promising, but the failure of o, and H, to converge needs attention.
Additional searching is needed, experimenting with larger values of the random walk perturbation standard
deviation for these parameters to make sure the parameter space is properly searched.

C. The consistently climbing likelihood is promising, but the failure of o, and H, to converge needs attention.
Additional searching is needed, experimenting with smaller values of the random walk perturbation standard
deviation for these parameters to make sure the parameter space is properly searched.

D. The consistently climbing likelihood is promising, but the failure of o,, and H,, to converge needs attention.
This indicates weak identifiability which cannot be solved by improving the searching algorithm. Instead,
we should change the model, or fix one or more parameters at scientifically plausible values, to resolve the
identifiability issue before proceeding.

E. Although the log likelihood seems to be climbing during the search, until the convergence problems with
o, and H, have been addressed we should not be confident about the successful optimization of the likelihood
function or the other parameter estimates.

Solution. A.

All searches are finding parameters with consistent likelihood. The discrepancies of a few log likelihood units
put the parameter values within statistical uncertainty according to Wilks’s Theorem. Therefore, the spread
in the parameter estimates reflects uncertainty about the parameter given the data, rather than a lack of
convergence.

That perspective suggests that the goal of the Monte Carlo optimizer is to get close to the MLE, measured
by likelihood, rather than to obtain it exactly. Independent Mont Carlo searches can be combined via a
profile likelihood to get a more exact point estimate and a confidence interval.

Wide confidence intervals, also called weak identifability, are not necessarily a problem for the scientific
investigation. Some parameters may be imprecisely estimable, while others can be obtained more precisely,
and part of the analysis is to find which is in each category. It may also be of interest to investigate what
extra precision can be obtained on one parameter by making assumptions about the value of another, as in
D, but this is not mandatory for proper inference.

Overall, the convergence plots here look good. The plots show that the seaches are all started from a single
high likelihood starting point. Now this has been done successfully, a natural next step would be to start
some searches from more diverse starting points to look for any global features missed by this local search.

Q10-04.

The iterated filtering convergence diagnostics plot in figure 2 comes from a 2021 student project investigating
COVID-19. The calculation used 10® particles. What is the best interpretation?

A. Everything seems to be working fine. There is a clear consensus from the different searches concerning the
highest likelihood that can be found. Therefore, the search is doing a good job of maximization. Occasional
searches get lost, such as the purple line with a low likelihood, but that is not a problem.

B. The searches obtain likelihood values spread over thousands of log units. We would like to see consistent
convergence within a few log units. We should use more particles and/or more iterations to achieve this.

C. The searches obtain likelihood values spread over thousands of log units. We would like to see consistent
convergence within a few log units. We should compare the best likelihoods obtained with simple statistical
models, such as an auto-regressive moving average model, to look for evidence of model misspecification.

D. The searches obtain likelihood values spread over thousands of log units. We would like to see consistent
convergence within a few log units. We should look at the effective sample size plot for the best fit we have
found yet, to see whether there are problems with the particle filtering.

E. All of B, C, and D.

Solution. E.
The wide spread in likelihood, thousands of log units, shown in this convergence plot suggests that the


https://ionides.github.io/531w21/final_project/project15/blinded.html
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numerics are not working smoothly. The question is, what to do about it?

Once you think your code is debugged, if evidence for poor Monte Carlo convergence remains, it is worth
increasing the computational effort to see if that solves the problem. An overnight job on greatlakes could
be appropriate. That supports answer B.

Comparing with simple statistical benchmarks is always a good idea. If your model fits more poorly than an
ARMA model, or some other simple model appropriate for your data, then it is plausible that the numerical
difficulties with the particle filter are due to model misspecification. The diagnostic plots here show some
success at global maximization for their model (multiple searches attain a similar likelihood value). Their
maximized likelihood was 47 log units lower than ARMA model. This shows that it is worth considering
some extra time on model development, supporting answer C. The ARMA benchmark is not given in the
question, but you should know that it (or something similar) is useful to calculate.

Identifying time points with low effective sample size can help to identify which parts of the data are
problemtic for the model to explain. Thus, D is a standard and useful diagnostic practice. This could help
to identify an outlier in the data. Maybe there is an outlier, or maybe there is some other kind of model
misspecification; at this point in the investigation we can’t tell for sure.

Q4. Data analysis: epidemiological models
Q11-01.

Two models are fitted to case counts on an epidemic. Model 1 is an SIR POMP model with a negative
binomial measurement model, and model 2 is a linear regression model estimating a cubic trend. The log
likelihoods are ¢; = —2037.91 and ¢, = —2031.28 respectively. Which of the following do you agree with
most?

A. We should not compare the models using these likelihoods. They correspond to different model structures,
so it is an apples-to-oranges comparison.

B. We can compare them, but the difference is in the 4th significant figure, so the likelihoods are statistically
indistinguishable.

C. The linear model has a noticeably higher likelihood. Our mechanistic model needs to be updated to beat
this benchmark before we can responsibly interpret the fitted model. If a simple regression model has higher
likelihood than a more complex mechanistic model, one should prefer the simpler model.

D. The linear model has a noticeably higher likelihood. The mechanistic model is somewhat validated
by being not too far behind the simple regression model. We are justified in cautiously interpreting the
mechanistic model, while continuing to look for further improvements.

E. The log likelihoods cannot properly be compared as presented, but could be if we used a Gaussian
measurement model for the POMP (or a negative binomial generalized linear model instead of least squares
for the regression).

Solution. D.

Why not A? Likelihoods of different models for the same data can be compared. Likelihood ratio tests using
Wilks’s theorem specifically require nested models, but in other contexts (such as AIC and the Neyman-
Pearson lemma) the models being compared by likelihood do not need to have any particular relationship.

Why not B? Likelihood ratios have statistical meaning, which corresponds to differences of log likelihoods.
The likelihood is a dimensional quantity, whereas the likelihood ratio is dimensionless. The units used
correspond to a scientifically arbitrary additive constant to the log likelihood, which disappears after taking
differences.

Why not C? If our only goal were to find a predictive model, then (C) could be a reasonable position. Usually,
we want to find a model that also has interpretable structure, leading to understanding of the system or
estimating the effect of interventions. A simple regression model cannot do those things, even if it fits a bit

10



better. If the mechanistic model fits much worse than simple alternatives, it is not providing a reasonable
explanation of the data, suggesting that there may be important things missing from the model specification.

Quite likely, with some persistence, a mechanistic specification will beat a simple off-the-shelf statistical
model.

Q11-02.

A compartment model is first implemented as a system of ordinary differential equations (ODEs). This leads
to qualitatively reasonable trajectories, but poor likelihood values. The researchers add stochasticity in an
attempt to improve the fit of the model by interpreting the ODEs as rates of a Markov chain. The likelihood,
maximized by iterated particle filtering, remains poor compared to ARMA benchmarks. In addition, the
effective sample size for the particle filtering is low at many time points despite even using as many as 10*
particles. Which of the following is the most promising next step?

A. Increase to 10° particles, moving the computations to a cluster if necessary.

B. Add noise to one or more rates to allow for overdispersion.

C. Try adding extra features to the model to capture scientific details not present in the original model.
D. Experiment with variations in the iterated filtering procedure; maybe more iterations, or a different
cooling schedule.

E. To address the possibility of reporting errors, see if the model fits better when the most problematic data
points are removed.

Solution. B.

All the possibilities are worth consideration. However, adding noise in rates to give flexibility in mean-
variance relationships is commonly an important part of developing a stochastic model. The simple compart-
ment model interpretation of a ODE as a Markov chain is determined by the rates and therefore does not
have free parameters to describe variance. There is some variance inherent in the Markov chain (demographic
stochasticity) but additional variability may be needed. It will be hard to investigate the other possibilities
if the model has not been given enough stochasticity to explain the variability in the data, so including
overdispersion should be an early step. Note that overdispersion can be included in both the process model
and the measurement model.

Q11-03. You fit an SEIR model to case reports of an immunizing disease from a city. The resulting
confidence interval for the mean latent period is 12-21 days, but clinical evidence points to a latent period
averaging about 7 days. Which of the following is the most appropriate response to this discrepancy?

A. The latent period may be confounded with some unmodeled aspect of the system, such as spatial or age
structure. The model estimates an effective latent period at the population level, which may not perfectly
match what is happening at the scale of individuals.

B. The discrepancy shows that something is substantially wrong with the model. Extra biological detail
must be introduced with the goal of bringing the estimated parameter back in line with the known biology
of the system.

C. The discrepancy is problematic, but fortunately can readily be fixed. Since we know the clinical value of
this parameter with reasonable accuracy, we should simply use this value in the model rather than estimating
it.

D. If the model fits the data statistically better than any known alternative model, then we have to take the
estimated parameter at face value. It is certainly possible that the estimates in the literature correspond to
some different population, or different strain, or have some other measurement bias such as corresponding
to severe cases resulting in hospitalization. The discrepancy does not show that our model was wrong.

E. This discrepancy suggests that we should take advantage of both C and D above by putting a Bayesian
prior on the latent period. By quantifying the degree of our skepticism about the previously established
clinical value of 7 days, we can optimally combine that uncertainty with the evidence from this dataset.

Solution. A.
Transferring parameter estimates between scales is hard. An example is the difficulty of reconciling micro
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and macro economics. It is generally not possible to guarantee that a parameter means exactly the same
thing in models at different scales. (A) acknowledges this. The other answers, in various ways, assume that
there should be a single parameter value that describes the system at all scales. There is some merit also
to (D), since it is reasonable to try to gain biological understanding by investigating why the fitted model
is successful at explaining the data. However, this is an observational study and so we should be cautious
of making a causal interpretation of models fitted to data due to the possiblity of confounding. Only (A)
addresses this concern.

Q5. Data analysis: financial models
Q12-01.

A generalized autoregressive conditional heteroskedasticity (GARCH) model has Y,, = 0,,Z, where Z,, ~
ii.d.N(0,1) and

02 =y + Z ;Y2 + Z Bior_ ;.

For data y7,y, residuals may be defined by r, =Y, /6, where 6, is an estimate of o,,. Suppose that we fit
a GARCH model to the log-returns of a financial time series, and we find that the sample ACF of ry, is
consistent with white noise (e.g., 531W24 final project #7). What is the best inference from the residual
ACF about the success of the GARCH model for these data?

A. This supports the use of GARCH over ARMA. That is not especially surprising, since it is true for
essentially all financial time series, but it is good to check.

B. A fitted ARMA model is also anticipated to have a residual ACF consistent with white noise. The
problem with the ARMA model for financial data is not residual autocorrelation.

C. We should also make a normal quantile plot of the residuals. If the residuals are approximately normal
then the ACF plot becomes more trustworthy as a test for lack of correlation. If the residuals are far from
normal, we should not draw conclusions from the sample ACF.

D. GARCH aims to fix the problem of conditional heteroskedasticity in financial data that ARMA cannot
explain. However, fixing this might break the negligible autocorrelation that is critical for the efficient market
hypothesis. It is good to see that we can fix conditional heteroskedasticity while remaining compatible with
the efficient market hypothesis.

Solution. B.

It would be surprising if substantial sample autocorrelation appeared in the residuals of a GARCH model,
at least for a highly traded financial instrument. This would violate the efficient market hypothesis. But
that observation is just as true for an i.i.d. white noise model. The reason to prefer GARCH over an i.i.d.
white noise model is to explain the conditional heteroskedasticity, but the ACF does not reveal whether or
not that is successful.

Q12-02.

A generalized autoregressive conditional heteroskedasticity (GARCH) model has Y,, = ¢,,Z, where Z,, ~
i.i.d.N(0,1) and 02 = ay —I—Zle Y2, +Ej:1 0p ;. There are many extensions to GARCH implemented
by various R packages. When comparing models by likelihood or AIC, care is required since packages do
not always use standard definitions. What is the most reasonable interpretation of this table?

for (i in 1:p) {
for (j in 1:q) {
fit_garch <- tseries::garch(log_returns, c(i, 30
garch_table[i, j] <- tseries:::loglLik.garch(fit_garch)
}
}
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ql q2 q3 q4
pl  2646.277 2642.919 2620.280 2616.151
p2  2644.417 2625.417 2622.460 2616.427
p3  2641.804 2637.538 2625.953  2625.740
pd  2639.728 2629.869 2629.969 2628.345

A. The positive values of the log-likelihood are implausible. Perhaps the software actually reports the
negative log-likelihood since many optimizers are designed to minimize rather than maximize.

B. The models are nested and so a larger model should mathematically have a larger likelihood. In this
table, the larger model usually has lower likelihood, so optimization is problematic.

C. This table would make more sense if logLik in fact returns an AIC value. The preferred model is
(pq) = (1,4).

D. The preferred model is (p,q) = (1,1) since it is both the simplest model and the one with the highest
log-likelihood.

E. tseries::garch produces something that is not the likelihood of y;.» or the AIC, and so we cannot
readily compare it between models.

Solution. E.

?tseries::loglLik.garch

reveals that

‘loglik’ returns the log-likelihood value of the GARCH(p, q) model
represented by ‘object’ evaluated at the estimated coefficients.
It is assumed that first max(p, q) values are fixed.

Therefore, the log-likelihood for fiting GARCH(p,q) corresponds only to y{max(p Q41N The violations of
nesting occur because different amounts of data are used for differeng values of max(p,q). Therefore, we

cannot easily compare likelihoods or AIC values.
Q12-03.
The Heston model for volatility, V,,, is a stochastic volatility (SV) model with

Vn = (1 - ¢)0 + ¢Vn—1 + V Vn—l Wy

for w,, ~ N[0,02]. The log return is Y,, ~ N[0,V, ], conditional on V,,. A previous 531 project (W22, #14)
fitted the Heston model to investment in Ethereum, a crypto currency. They obtained a log-likelihood of
34975.3, compared to 28587.4 for GARCH and 28977 for the SV model with leverage presented in class.
Their iterated filtering convergence diagnostics are shown in figure 3. What is the best conclusion from this
information?

A. The high likelihood shows this is a promising model despite the convergence problems identified in the
figure. Attention to the diagnostics may lead to additional improvements.

B. The most important diagnostic feature is the observation that the log-likelihood trace plot peaks and then
declines. From the y-axis scale we see the decline is of order 1000 log units. This is evidence of substantial
model misspecification which should be addressed.

C. The most important dignostic feature is that the theta traces all drop quickly to zero. Since that is not
a scientifically plausible value for the parameter, we can deduce that the model is unsuccessful despite its
high likelihood.

D. The most important diagnostic feature is that phi is close to zero and well identified. This shows that
the volatility is close to constant, and is supported by the high likelihood.
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Figure 3: Diagnostic plot for fitting the Heston model

E. The decreasing likelihood and other convergence diagnostics problems show there is a problem with the
model. Likely, there is a bug and the high likelihood obtained is simply an error.

Solution. A.

The structure of the particle filter makes it hard to obtain an artificially high likelihood by cheating. Mathe-
matically, the best expected log-likelihood is obtained by a one-step forecast distribution matching the true
prediction distribution, assuming the model is correct. (This is just another way of stating the property that
the expected log-likelihood is highest under the true model.)

If dmeasure is not in fact a density then artificially high likelihoods are possible, but in most models (including
this one) the measurement model is a call to a basic R function known to be a density (i.e., integrating to

1).

Inspection of the source code, available online, reveals that the authors made a mistake in implementing
rprocess. Specifically, the rprocess line

V = theta*(1 - phi) + phi*sqrt(V) + sqrt(V)*omega;
should be
V = theta*x(1 - phi) + phi*V + sqrt(V)*omega;

Thus, their model is not exactly the model they thought they were implementing, leading to incorrect
interpretations of their results. Nevertheless, this error turns out to give rise to a model which fits the data
very well. This happy accident suggests that a key to modeling the data may be to use a longer-tailed
distribution than normal for the returns.

Q6. Computing with POMP models
Q13-01.

Suppose you obtain the following error message when you build your pomp model using C snippets.

##
## Error: in ‘simulate’: error in building shared-object library from C snippets: in ‘Cbuilder’:
## compilation error: cannot compile shared-object library
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## /tmp/RtmpFkkeCQ/24104/pomp_4fc43714a7a9ebddf896bbc51635d211.s0’: status = 1

## compiler messages:

## gcc -I1"/usr/local/apps/R/ubuntu_20.04/4.2.1/1ib64/R/include" -DNDEBUG

## -I'/home/kingaa/R/x86_64-pc-linux-gnu-library/4.2/pomp/include' -I'/home/kingaa/teach/sbied’
## -I/usr/local/include -fpic -g -02 -Wall -pedantic -c

## /tmp/RtmpFkkeCQ/24104/pomp_4fc43714a7a9ebddf896bbc51635d211. ¢

## -o /tmp/RtmpFkkeCQ/24104/pomp_4fc43714a7a9ebddf896bbc51635d211.0

## In file included from /home/kingaa/R/x86_64-pc-linux-gnu-library/4.2/pomp/include/pomp.h:9,
## from /tmp/RtmpFkkeCQ/24104/pomp_4fc43714a7a9ebddf896bbc51635d211.¢c:5:

## /tmp/RtmpFkkeCQ/24104/pomp_4fc43714a7a9ebddf896bbc51635d211.c: In function ¢__pomp_rmeasure’:
## /usr/local/apps/R/ubuntu_20.04/4.2.1/1ib64/R/include/Rmath.h:333:16: error:

## too many arguments to function ‘Rf_rnorm

## In addition: Warning message:

## In system2(command = R.home("bin/R"), args = c("CMD", "SHLIB", "-c",

##  running command 'PKG_CPPFLAGS="-I'/home/kingaa/R/x86_64-pc-linux-gnu- llbrary/4 2/pomp/include’
## -I'/home/kingaa/teach/sbied'" '/usr/local/apps/R/ubuntu_20.04/4.2.1/1ib64/R/bin/R' CMD SHLIB -c

## -o /tmp/RtmpFkkeCQ/24104/pomp_4fc43714a7a9ebddf896bbc51635d211.s0
## /tmp/RtmpFkkeCQ/24104/pomp_4fc43714a7a9ebddf896bbc51635d211.¢c 2>&1' had status 1

Which of the following is a plausible cause for this error?

A. Using R syntax within a C function that has the same name as an R function.
B. A parameter is missing from the paramnames argument to pomp.

C. Indexing past the end of an array because C labels indices starting at 0.

D. Using beta as a parameter name when it is a declared C function.

E. A missing semicolon at the end of a line.

Solution. A.

The code producing the error is below. Within C snippets, the C versions of R distribution functions are
available but they have slightly different syntax from their more familiar R children. A complete reference
guide to R’s C interface is available as part of R’s documentation. In particular, the C form of R’s distribution
functions is useful for writing C snippets.

sir4 <- simulate(

sirl,
C(HSH , |III| s IIRH s ”CaSGS" , I|wll) ,
c(
gammall n ull s lliotall ,

"betal" s llbeta_sdll s llpopu s "rho! s
IIS_OII s ”I_O” s ”R_O”

)
Csnippet ("
double mean, sd;
double rep;
mean = cases*rho;
sd = sqrt(cases*rhox(1-rho));
rep = nearbyint (rnorm(1,mean,sd)) ;
reports = (rep > 0) ? rep : O;"
)

)

Q13-02. Suppose you obtain the following error message when you build your pomp model using C snippets.

##

## Error: error in building shared-object library from C snippets: in ‘Cbuilder’: compilation error:

## cannot compile shared-object library
## ¢/tmp/RtmpFkkeCQ/24104/pomp_068eedfcaf62b1e391363bbdd99fbe8c.so0’: status = 1
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

compiler messages:
gcc —I"/usr/local/apps/R/ubuntu_20.04/4.2.1/1ib64/R/include" -DNDEBUG
-I'/home/kingaa/R/x86_64-pc-linux-gnu-library/4.2/pomp/include' -I'/home/kingaa/teach/sbied’
-I/usr/local/include -fpic -g -02 -Wall -pedantic
-c /tmp/RtmpFkkeCQ/24104/pomp_068eedfcaf62b1e391363bbdd99fbe8c.c
-o /tmp/RtmpFkkeCQ/24104/pomp_068eedfcaf62b1e391363bbdd99fbe8c.0
/tmp/RtmpFkkeCQ/24104/pomp_068eedfcaf62b1e391363bbdd99fbe8c.c:
In function ‘__pomp_rinit’:
/tmp/RtmpFkkeCQ/24104/pomp_068eedfcaf62b1e391363bbdd99fbe8c.c:38:13:
error: called object is not a function or function pointer
38 | cases = 0
| -
make: *** [/usr/local/apps/R/ubuntu_20.04/4.2.1/1ib64/R/etc/Makeconf:168:
/tmp/RtmpFkkeCQ/24104/pomp_068eedfcaf62b1e391363bbdd99fbe8c.0] Error 1
In addition: Warning message:
In system2(command = R.home("bin/R"), args = c("CMD", "SHLIB", "-c",
running command 'PKG_CPPFLAGS="-I'/home/kingaa/R/x86_64-pc-linux-gnu-library/4.2/pomp/include’
-I'/home/kingaa/teach/sbied'" '/usr/local/apps/R/ubuntu_20.04/4.2.1/1ib64/R/bin/R' CMD SHLIB -c
-o /tmp/RtmpFkkeCQ/24104/pomp_068eedfcaf62b1e391363bbdd99fbe8c. so
/tmp/RtmpFkkeCQ/24104/pomp_068eedfcaf62b1e391363bbdd99fbe8c.c 2>&1' had status 1

Which of the following is a plausible cause for this error?

A. Using R syntax within a C function that has the same name as an R function.
B. A parameter is missing from the paramnames argument to pomp.

C. Indexing past the end of an array because C labels indices starting at 0.

D. Using beta as a parameter name when it is a declared C function.

E. A missing semicolon at the end of a line.

Solution. E.
The error message was produced by the code below. pomp passes on the C compiler error message for you
to inspect. Note the missing semicolon in the next-to-last line.

sirl <- sir()
sir2 <- pomp(

)

sirl,
c("s","I","R","cases","W"),
c(
"gamma","mu","iota",
"betal","beta_sd","pop","rho",
"s_ o","I_0","R_O"
)¢
Csnippet ("
double m = pop/(S_0+I_0+R_0);
S = nearbyint (m*S_0) ;
I nearbyint (m*I_0);
R = nearbyint(m*R_0);
cases = 0
W= 0;"
)

Q13-03.

A useful way to check statistical methodology is to apply an inference method to a collection of simulated
datasets from the fitted model with the estimated parameter values (say, the maximum likelihood estimate,
MLE). This is sometimes called a “parametric bootstrap”. Suppose that we carry out this check for a POMP
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data analysis, using plug-and-play inference methodology such as iterated filtering, and we find that the
re-estimated parameters from inference on the simulated data are close to the MLE. What can we infer
about the correctness of our inference.

A. This is a strong check that both the model and the methodology are correctly implemented. Except for
some rare special cases, an error in either one of these will lead the check to fail.

B. This checks the implementation of the inference methodology but not the model. Even if the model is
implemented wrongly, the check will still show us whether the inference methodology is correct.

C. This checks the implementation of the model but not the inference methodology. As long as the model
is implemented correctly, any reasonable inference methodology should pass the check successfully.

D. This is not a strong check of either the model or the methodology. It shows self-consistency but that is
different from showing accuracy.

Solution. B.

This is a useful property to bear in mind when debugging statistical analysis carried out using plug-and-play
methodology. By definition, the inference methodology defines the model via a simulator, and presumably the
same simulator is used for inference as for the simulation used to test the inference. Thus, the parametric
bootstrap exercise tests the inference methodology but not the correctness of the model implementation;
errors in the latter will apply in the same way to both the simulation and the inference, so cannot show up
as a mismatch between inferred parameters and re-estimated parameters.

Errors in rprocess for a POMP model are hard to debug for this reason. Best practice is to present the
Csnippet right next to the math representation, and use the same notation for both, so that the visual match
is evident.

It is a good idea to carry out a parametric bootstrap despite this limitation.

License: This material is provided under a Creative Commons license
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