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Chapter 1: Introduction
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Objectives for this chapter

• Discuss some basic motivations for the topic of time series analysis.
• Introduce some fundamental concepts for time series analysis: stationarity, autocorrelation,

autoregressive models, moving average models, autoregressive-moving average (ARMA)
models, state-space models. These will be covered in more detail later.

• Introduce some of the computational tools we will be using.

Overview

• Time series data are, simply, data collected at many different times.

• This is a common type of data! Observations at similar time points are often more similar
than more distant observations.

• This immediately forces us to think beyond the independent, identically distributed
assumptions fundamental to much basic statistical theory and practice.

• Time series dependence is an introduction to more complicated dependence structures:
space, space/time, networks (social/economic/communication), …

Looking for trends and relationships in dependent data

The first half of this course focuses on:

1. Quantifying dependence in time series data.
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2. Finding statistical arguments for the presence or absence of associations that are valid in
situations with dependence.

Example questions: Does Michigan show evidence for global warming? Does Michigan follow
global trends, or is there evidence for regional variation? What is a good prediction interval for
weather in the next year or two?

Modeling and statistical inference for dynamic systems

The second half of this course focuses on:

1. Building models for dynamic systems, which may or may not be linear and Gaussian.

2. Using time series data to carry out statistical inference on these models.

Example questions:

• Can we develop a better model for understanding variability of financial markets (known
in finance as volatility)? How do we assess our model and decide whether it is indeed an
improvement for some purpose?

• Why is a new strain of ebola spreading quickly? Has it evolved to be more contagious?
Has something else changed?

Example: Winter in Michigan

There is a temptation to attribute a warm winter to global warming. You can then struggle to
explain a subsequent cold winter. Is a trend in fact noticeable at individual locations in the
presence of variability? Let’s look at some data, downloaded from www.usclimatedata.com and
put in ann_arbor_weather.csv.

• This file is in the course git repository on GitHub. Make a local clone of this repo to get
an up-to-date copy of all data, notes, code, homeworks and solutions for this course.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf

y = pd.read_csv("ann_arbor_weather.csv",
sep='\t', comment='#')
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Reproducible documents with Quarto

The notes combine source code with text, to generate statistical analysis that is:

• Reproducible
• Easily modified or extended

These two properties are useful for developing your own statistical research projects. Also, they
are useful for teaching and learning statistical methodology, since they make it easy for you to
replicate and adapt analysis presented in class.

• Many of you will already know Jupyter notebooks and/or Rmarkdown.
• Quarto (qmd format) is a newer system that works with both Python and R, and naturally

produces both html and pdf outputs.

Some basic investigation using Python

To get a first look at our dataset, we can examine its structure:

print(y.head(4))

Year Low High Hi_min Lo_max Avg_min Avg_max Mean Precip Snow \
0 1900 -7.0 50.0 36.0 12.0 18.0 34.7 26.3 1.06 4.0
1 1901 -7.0 48.0 37.0 20.0 17.0 31.8 24.4 1.45 10.1
2 1902 -4.0 41.0 27.0 11.0 15.0 30.4 22.7 0.60 6.0
3 1903 -7.0 50.0 36.0 12.0 15.1 29.6 22.4 1.27 7.3

Hi_Pricip Hi_Snow
0 0.28 1.1
1 0.40 3.2
2 0.25 2.5
3 0.40 3.2

We focus on Low, which is the lowest temperature, in Fahrenheit, for January.

Statistical uncertainty

As statisticians, we want an uncertainty estimate. We want to know how reliable our estimate
is, since it is based on only a limited amount of data.

• The data are 𝑦1, … , 𝑦𝑁, which we also write as 𝑦1∶𝑁.
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• Basic estimates of the mean and standard deviation are

̂𝜇1 = 1
𝑁

𝑁
∑
𝑛=1

𝑦𝑛, 𝜎̂1 = √ 1
𝑁 − 1

𝑁
∑
𝑛=1

(𝑦𝑛 − ̂𝜇1)2.

• This suggests an approximate confidence interval for 𝜇 of ̂𝜇1 ± 1.96 𝜎̂1/
√

𝑁.

Question: What are the assumptions behind this confidence interval?

Computing the estimates

1955 has missing data, requiring a minor modification. So, we compute ̂𝜇1 and 𝑆𝐸1 = 𝜎̂1/
√

𝑁
as:

mu1 = y['Low'].mean()
se1 = y['Low'].std() / np.sqrt(y['Low'].count())
print(f"mu1 = {mu1:.2f}, se1 = {se1:.2f}")

mu1 = -2.88, se1 = 0.67

Question: If you had to give an uncertainty estimate on the mean, is it reasonable to present
the confidence interval, -2.88 ± 1.31? Do you have ideas of a better alternative?

The first rule of data analysis is to plot the data in as many ways as you can think of. For
time series, we usually start with a time plot.

plt.figure(figsize=(10, 3))
plt.plot(y['Year'], y['Low'], '-')
plt.xlabel('Year'); plt.ylabel('January low (F)')
plt.tight_layout(); plt.show()
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Question: Do you see any patterns in the data?

The auto-regressive moving average (ARMA) model

A basic way to look for dependence is to fit an auto-regressive moving average (ARMA)
model. We’ll see ARMA models in more detail later in the course. Let’s fit an ARMA model
given by

𝑌𝑛 = 𝜇 + 𝛼(𝑌𝑛−1 − 𝜇) + 𝜖𝑛 + 𝛽𝜖𝑛−1.

This has a one-lag autoregressive term, 𝛼(𝑌𝑛−1 − 𝜇), and a one-lag moving average term, 𝛽𝜖𝑛−1.
It is therefore called an ARMA(1,1) model. These lags give the model some time dependence.

• 𝛼 = 𝛽 = 0 is the basic independent model, 𝑌𝑛 = 𝜇 + 𝜖𝑛.
• 𝛼 = 0 is a moving average model with one lag, MA(1).
• 𝛽 = 0 is an autoregressive model with one lag, AR(1).

We model 𝜖1 … , 𝜖𝑁 to be an independent, identically distributed (iid) sequence. To be concrete,
let’s specify a model where they are normally distributed with mean zero and variance 𝜎2.

A note on notation

• In this course, capital Roman letters, e.g., 𝑋, 𝑌, 𝑍, denote random variables. We may
also use 𝜖, 𝜂, 𝜉, 𝜁 for random noise processes. Thus, these symbols are used to build
models.

• We use lower case Roman letters (𝑥, 𝑦, 𝑧, …) to denote numbers. These are not random
variables. We use 𝑦 to denote a data point.
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• “We must be careful not to confuse data with the abstractions we use to analyze them.”
(William James, 1842-1910).

• Other Greek letters will usually be parameters, i.e., real numbers that form part of the
model.

ARMA(1,1) maximum likelihood estimation in Python

arma11 = ARIMA(y['Low'], order=(1, 0, 1)).fit()
print(arma11.summary())

SARIMAX Results
==============================================================================
Dep. Variable: Low No. Observations: 126
Model: ARIMA(1, 0, 1) Log Likelihood -427.884
Date: Thu, 08 Jan 2026 AIC 863.768
Time: 08:30:01 BIC 875.113
Sample: 0 HQIC 868.377

- 126
Covariance Type: opg
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
const -2.8744 0.697 -4.125 0.000 -4.240 -1.509
ar.L1 -0.5974 1.334 -0.448 0.654 -3.212 2.017
ma.L1 0.6322 1.298 0.487 0.626 -1.911 3.176
sigma2 55.0492 6.923 7.952 0.000 41.481 68.617
===================================================================================
Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 0.95
Prob(Q): 0.82 Prob(JB): 0.62
Heteroskedasticity (H): 1.83 Skew: 0.21
Prob(H) (two-sided): 0.05 Kurtosis: 3.11
===================================================================================

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).

/Users/ionides/git/531w26/.venv/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:966: UserWarning: Non-stationary starting autoregressive parameters found. Using zeros as starting parameters.
warn('Non-stationary starting autoregressive parameters'

/Users/ionides/git/531w26/.venv/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:978: UserWarning: Non-invertible starting MA parameters found. Using zeros as starting parameters.
warn('Non-invertible starting MA parameters found.'

Extracting key parameters

• The full model summary printout is too much information. You or your reader might not
understand everything. Some parts might be best ignored.

• We can extract the quantities of primary interest from the fitted ARMA model in Python.

mu2 = arma11.params['const']
se2 = arma11.bse['const']
print(f"mu2 = {mu2:.2f}, se2 = {se2:.2f}")

mu2 = -2.87, se2 = 0.70

• We will write the ARMA(1,1) estimate of 𝜇 as ̂𝜇2, and its standard error as 𝑆𝐸2.
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Comparing the iid estimate with the ARMA estimate

/Users/ionides/git/531w26/.venv/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:966: UserWarning: Non-
stationary starting autoregressive parameters found. Using zeros as starting parameters.

warn('Non-stationary starting autoregressive parameters'
/Users/ionides/git/531w26/.venv/lib/python3.9/site-packages/statsmodels/tsa/statespace/sarimax.py:978: UserWarning: Non-
invertible starting MA parameters found. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.'

• The two estimates, ̂𝜇1 = -2.88 and ̂𝜇2 = -2.87, and their standard errors, SE1 = 0.67 and
SE2 = 0.70, are close.

• For data up to 2015, ̂𝜇2015
1 = -2.83 and ̂𝜇2015

2 = -2.85, with standard errors, SE2015
1 =

0.68 and SE2015
2 = 0.85.

• In this case, the standard error for the simpler model is 20.3% smaller.

Exactly how the ARMA(1,1) model is fitted and the standard errors computed will be covered
later.

Question: When standard errors for two methods differ, which is more trustworthy? Or are
they both equally valid for their distinct estimators?

Model diagnostic analysis

• We should do diagnostic analysis. The first thing to do is to look at the residuals.
• For an ARMA model, the residual 𝑟𝑛 at time 𝑡𝑛 is defined to be the difference between

the data, 𝑦𝑛, and a one-step ahead prediction of 𝑦𝑛 based on 𝑦1∶𝑛−1, written as ̂𝑦𝑛.

From the ARMA(1,1) definition,

𝑌𝑛 = 𝜇 + 𝛼(𝑌𝑛−1 − 𝜇) + 𝜖𝑛 + 𝛽𝜖𝑛−1,

a basic one-step-ahead predicted value corresponding to parameter estimates ̂𝜇 and ̂𝛼 could
be

̂𝑦𝑛 = ̂𝜇 + ̂𝛼(𝑦𝑛−1 − ̂𝜇).

A residual time series, 𝑟1∶𝑁, is then given by

𝑟𝑛 = 𝑦𝑛 − ̂𝑦𝑛.

In fact, Python’s statsmodels does something slightly more sophisticated.
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Residual plot

plt.figure(figsize=(10, 3))
plt.plot(arma11.resid)
plt.xlabel('Index')
plt.ylabel('Residuals')
plt.tight_layout()
plt.show()
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What patterns do you see?

• The residual plot may suggest slow variation in the residuals, over a decadal time scale.

• Is there short-term dependence? We study this by plotting the pairwise sample correlations
at a range of lags. This is the sample autocorrelation function, or sample ACF,
written for each lag ℎ as

̂𝜌ℎ =
1
𝑁 ∑𝑁−ℎ

𝑛=1 𝑟𝑛 𝑟𝑛+ℎ
1
𝑁 ∑𝑁

𝑛=1 𝑟𝑛
2

.

ACF plot

fig, ax = plt.subplots(figsize=(10, 4))
plot_acf(arma11.resid.dropna(), ax=ax, lags=20)
plt.tight_layout()
plt.show()
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• This shows no substantial autocorrelation. An ARMA model may not be a good way to
describe the slow variation present in the residuals of the ARMA(1,1) model.

Quantifying uncertainty for scientific reproducibility

Usually, omitted dependency in the model will give overconfident (too small) standard errors.

• This leads to scientific reproducibility problems, where chance variation is too often
assigned statistical significance.

• It can also lead to improper pricing of risk in financial markets, a factor in the US financial
crisis of 2007-2008.

Artificial neural network (ANN) methods vs parametric models

• Training an ANN requires extensive data, and is complicated by dependence.

• ANN methods, “deep learning,” are better adapted to prediction problems than testing
hypotheses about causal mechanisms.

• Long short-term memory (LSTM) ANN architectures have been used for time series
forecasting.

• This has only a small role in the course.
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AI for data analysis

• Methodological choices in data analysis are sometimes limited by practical difficulties
coding up the analysis.

• Methods for dependent data involve extra computational complexities.

• AI can provide effective coding support, if it is carefully used.

• We focus on quality over quantity to avoid being overwhelmed by excessive low-quality
AI analysis.

• We learn AI data analysis by sharing successful techniques. Please share!

• These notes were translated from R to Python using claude code, with the context set by
https://github.com/ionides/531w25/tree/main/CLAUDE.md

A first look at a state-space model

Scientists and engineers often have equations in mind to describe a system they’re interested
in. Often, we have a model for how the state of a stochastic dynamic system evolves through
time, and another model for how imperfect measurements on this system gives rise to a time
series of observations.

This is called a state-space model. The state models the quantities that we think determine
how the system changes with time. However, these idealized state variables are not usually
directly and perfectly measurable.

Statistical analysis of time series data on a system aims to:

1. Help scientists choose between rival hypotheses.

2. Estimate unknown parameters in the model equations.

We will look at examples from a wide range of scientific applications. The dynamic model may
be linear or nonlinear, Gaussian or non-Gaussian.

A finance example: fitting a model for volatility of a stock market
index

• Let {𝑦𝑛, 𝑛 = 1, … , 𝑁} be the daily returns on a stock market index, such as the S&P 500.

• The return is the difference of the log of the index. If 𝑧𝑛 is the index value for day 𝑛,
then 𝑦𝑛 = log(𝑧𝑛) − log(𝑧𝑛−1).
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• Since the stock market is notoriously unpredictable, it is often unproductive to predict
the mean of the returns and instead there is much emphasis on predicting the variability
of the returns, known as the volatility.

• Volatility is critical to assessing the risk of financial investments.

A volatility model

Financial mathematicians have postulated the following model. We do not need to understand
it in detail right now. The point is that we may want to fit and evaluate time series models of
interest to scientists.

𝑌𝑛 = exp {𝐻𝑛
2

} 𝜖𝑛, 𝐺𝑛 = 𝐺𝑛−1 + 𝜈𝑛,

𝐻𝑛 = 𝜇ℎ(1 − 𝜙) + 𝜙𝐻𝑛−1

+ 𝑌𝑛−1𝜎𝜂√1 − 𝜙2 tanh(𝐺𝑛−1 + 𝜈𝑛) exp {−𝐻𝑛−1
2

} + 𝜔𝑛.

• {𝜖𝑛} is iid 𝑁(0, 1), {𝜈𝑛} is iid 𝑁(0, 𝜎2
𝜈), {𝜔𝑛} is iid 𝑁(0, 𝜎2

𝜔).

• 𝐻𝑛 is unobserved volatility at time 𝑡𝑛, with auto-regressive behavior, having dependence
on 𝑌𝑛−1 and a slowly varying process 𝐺𝑛. We only observe the return, modeled by 𝑌𝑛.

Questions to be addressed later in the course

This is an example of a mechanistic model, where scientific or engineering considerations
lead to a proposed model. Now there is data and a model, it is time to recruit a statistician!

1. How can we get good estimates of the parameters, 𝜇ℎ, 𝜙, 𝜎𝜈, 𝜎𝜔, together with their
uncertainties?

2. Does this model fit better than alternative models? So far as it does, what have we
learned?

3. Does the data analysis suggest new models, or the collection of new data?

Likelihood-based inference for this partially observed stochastic dynamic system is possible,
and enables addressing these questions [1].

By the end of this course, you will be able to carry out data analysis developing complex models
and fitting them to time series. See past final projects for 2018, 2020, 2021, 2022, 2024, 2025
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