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Objectives for this chapter

▶ Discuss some basic motivations for the topic of time series
analysis.

▶ Introduce some fundamental concepts for time series analysis:
stationarity, autocorrelation, autoregressive models, moving
average models, autoregressive-moving average (ARMA)
models, state-space models. These will be covered in more
detail later.

▶ Introduce some of the computational tools we will be using.
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Overview

▶ Time series data are, simply, data collected at many different
times.

▶ This is a common type of data! Observations at similar time
points are often more similar than more distant observations.

▶ This immediately forces us to think beyond the independent,
identically distributed assumptions fundamental to much basic
statistical theory and practice.

▶ Time series dependence is an introduction to more complicated
dependence structures: space, space/time, networks
(social/economic/communication), …
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Looking for trends and relationships in dependent data

The first half of this course focuses on:

1. Quantifying dependence in time series data.

2. Finding statistical arguments for the presence or absence of
associations that are valid in situations with dependence.

Example questions: Does Michigan show evidence for global
warming? Does Michigan follow global trends, or is there evidence
for regional variation? What is a good prediction interval for
weather in the next year or two?
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Modeling and statistical inference for dynamic systems

The second half of this course focuses on:

1. Building models for dynamic systems, which may or may not
be linear and Gaussian.

2. Using time series data to carry out statistical inference on these
models.

Example questions:

▶ Can we develop a better model for understanding variability of
financial markets (known in finance as volatility)? How do we
assess our model and decide whether it is indeed an
improvement for some purpose?

▶ Why is a new strain of ebola spreading quickly? Has it evolved
to be more contagious? Has something else changed?
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Example: Winter in Michigan
There is a temptation to attribute a warm winter to global warming.
You can then struggle to explain a subsequent cold winter. Is a
trend in fact noticeable at individual locations in the presence of
variability? Let’s look at some data, downloaded from
www.usclimatedata.com and put in ann_arbor_weather.csv.

▶ This file is in the course git repository on GitHub. Make a local
clone of this repo to get an up-to-date copy of all data, notes,
code, homeworks and solutions for this course.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf

y = pd.read_csv("ann_arbor_weather.csv",
sep='\t', comment='#')
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Reproducible documents with Quarto

The notes combine source code with text, to generate statistical
analysis that is:

▶ Reproducible
▶ Easily modified or extended

These two properties are useful for developing your own statistical
research projects. Also, they are useful for teaching and learning
statistical methodology, since they make it easy for you to replicate
and adapt analysis presented in class.

▶ Many of you will already know Jupyter notebooks and/or
Rmarkdown.

▶ Quarto (qmd format) is a newer system that works with both
Python and R, and naturally produces both html and pdf
outputs.
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Some basic investigation using Python

To get a first look at our dataset, we can examine its structure:
print(y.head(4))

Year Low High Hi_min Lo_max Avg_min Avg_max Mean Precip Snow \
0 1900 -7.0 50.0 36.0 12.0 18.0 34.7 26.3 1.06 4.0
1 1901 -7.0 48.0 37.0 20.0 17.0 31.8 24.4 1.45 10.1
2 1902 -4.0 41.0 27.0 11.0 15.0 30.4 22.7 0.60 6.0
3 1903 -7.0 50.0 36.0 12.0 15.1 29.6 22.4 1.27 7.3

Hi_Pricip Hi_Snow
0 0.28 1.1
1 0.40 3.2
2 0.25 2.5
3 0.40 3.2

We focus on Low, which is the lowest temperature, in Fahrenheit,
for January.
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Statistical uncertainty
As statisticians, we want an uncertainty estimate. We want to know
how reliable our estimate is, since it is based on only a limited
amount of data.

▶ The data are 𝑦1, … , 𝑦𝑁, which we also write as 𝑦1∶𝑁.

▶ Basic estimates of the mean and standard deviation are

̂𝜇1 = 1
𝑁

𝑁
∑
𝑛=1

𝑦𝑛, 𝜎̂1 = √ 1
𝑁 − 1

𝑁
∑
𝑛=1

(𝑦𝑛 − ̂𝜇1)2.

▶ This suggests an approximate confidence interval for 𝜇 of
̂𝜇1 ± 1.96 𝜎̂1/

√
𝑁.

Question: What are the assumptions behind this confidence
interval?
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Computing the estimates

1955 has missing data, requiring a minor modification. So, we
compute ̂𝜇1 and 𝑆𝐸1 = 𝜎̂1/

√
𝑁 as:

mu1 = y['Low'].mean()
se1 = y['Low'].std() / np.sqrt(y['Low'].count())
print(f"mu1 = {mu1:.2f}, se1 = {se1:.2f}")

mu1 = -2.88, se1 = 0.67

Question: If you had to give an uncertainty estimate on the mean,
is it reasonable to present the confidence interval, -2.88 ± 1.31? Do
you have ideas of a better alternative?
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The first rule of data analysis is to plot the data in as many ways as
you can think of. For time series, we usually start with a time plot.
plt.figure(figsize=(10, 3))
plt.plot(y['Year'], y['Low'], '-')
plt.xlabel('Year'); plt.ylabel('January low (F)')
plt.tight_layout(); plt.show()
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Question: Do you see any patterns in the data?
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The auto-regressive moving average (ARMA) model
A basic way to look for dependence is to fit an auto-regressive
moving average (ARMA) model. We’ll see ARMA models in more
detail later in the course. Let’s fit an ARMA model given by

𝑌𝑛 = 𝜇 + 𝛼(𝑌𝑛−1 − 𝜇) + 𝜖𝑛 + 𝛽𝜖𝑛−1.

This has a one-lag autoregressive term, 𝛼(𝑌𝑛−1 − 𝜇), and a one-lag
moving average term, 𝛽𝜖𝑛−1. It is therefore called an ARMA(1,1)
model. These lags give the model some time dependence.

▶ 𝛼 = 𝛽 = 0 is the basic independent model, 𝑌𝑛 = 𝜇 + 𝜖𝑛.
▶ 𝛼 = 0 is a moving average model with one lag, MA(1).
▶ 𝛽 = 0 is an autoregressive model with one lag, AR(1).

We model 𝜖1 … , 𝜖𝑁 to be an independent, identically distributed
(iid) sequence. To be concrete, let’s specify a model where they are
normally distributed with mean zero and variance 𝜎2.
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A note on notation

▶ In this course, capital Roman letters, e.g., 𝑋, 𝑌, 𝑍, denote
random variables. We may also use 𝜖, 𝜂, 𝜉, 𝜁 for random noise
processes. Thus, these symbols are used to build models.

▶ We use lower case Roman letters (𝑥, 𝑦, 𝑧, …) to denote
numbers. These are not random variables. We use 𝑦 to denote
a data point.

▶ “We must be careful not to confuse data with the abstractions
we use to analyze them.” (William James, 1842-1910).

▶ Other Greek letters will usually be parameters, i.e., real
numbers that form part of the model.
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ARMA(1,1) maximum likelihood estimation in Python
arma11 = ARIMA(y['Low'], order=(1, 0, 1)).fit()
print(arma11.summary())

SARIMAX Results
==============================================================================
Dep. Variable: Low No. Observations: 126
Model: ARIMA(1, 0, 1) Log Likelihood -427.884
Date: Thu, 08 Jan 2026 AIC 863.768
Time: 08:28:39 BIC 875.113
Sample: 0 HQIC 868.377

- 126
Covariance Type: opg
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
const -2.8744 0.697 -4.125 0.000 -4.240 -1.509
ar.L1 -0.5974 1.334 -0.448 0.654 -3.212 2.017
ma.L1 0.6322 1.298 0.487 0.626 -1.911 3.176
sigma2 55.0492 6.923 7.952 0.000 41.481 68.617
===================================================================================
Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 0.95
Prob(Q): 0.82 Prob(JB): 0.62
Heteroskedasticity (H): 1.83 Skew: 0.21
Prob(H) (two-sided): 0.05 Kurtosis: 3.11
===================================================================================

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
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Extracting key parameters

▶ The full model summary printout is too much information. You
or your reader might not understand everything. Some parts
might be best ignored.

▶ We can extract the quantities of primary interest from the
fitted ARMA model in Python.

mu2 = arma11.params['const']
se2 = arma11.bse['const']
print(f"mu2 = {mu2:.2f}, se2 = {se2:.2f}")

mu2 = -2.87, se2 = 0.70

▶ We will write the ARMA(1,1) estimate of 𝜇 as ̂𝜇2, and its
standard error as 𝑆𝐸2.

15 / 28



Comparing the iid estimate with the ARMA estimate

▶ The two estimates, ̂𝜇1 = -2.88 and ̂𝜇2 = -2.87, and their
standard errors, SE1 = 0.67 and SE2 = 0.70, are close.

▶ For data up to 2015, ̂𝜇2015
1 = -2.83 and ̂𝜇2015

2 = -2.85, with
standard errors, SE2015

1 = 0.68 and SE2015
2 = 0.85.

▶ In this case, the standard error for the simpler model is 20.3%
smaller.

Exactly how the ARMA(1,1) model is fitted and the standard errors
computed will be covered later.

Question: When standard errors for two methods differ, which is
more trustworthy? Or are they both equally valid for their distinct
estimators?
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Model diagnostic analysis
▶ We should do diagnostic analysis. The first thing to do is to

look at the residuals.
▶ For an ARMA model, the residual 𝑟𝑛 at time 𝑡𝑛 is defined to

be the difference between the data, 𝑦𝑛, and a one-step ahead
prediction of 𝑦𝑛 based on 𝑦1∶𝑛−1, written as ̂𝑦𝑛.

From the ARMA(1,1) definition,

𝑌𝑛 = 𝜇 + 𝛼(𝑌𝑛−1 − 𝜇) + 𝜖𝑛 + 𝛽𝜖𝑛−1,

a basic one-step-ahead predicted value corresponding to parameter
estimates ̂𝜇 and ̂𝛼 could be

̂𝑦𝑛 = ̂𝜇 + ̂𝛼(𝑦𝑛−1 − ̂𝜇).

A residual time series, 𝑟1∶𝑁, is then given by

𝑟𝑛 = 𝑦𝑛 − ̂𝑦𝑛.

In fact, Python’s statsmodels does something slightly more
sophisticated.
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Residual plot

plt.figure(figsize=(10, 3))
plt.plot(arma11.resid)
plt.xlabel('Index')
plt.ylabel('Residuals')
plt.tight_layout()
plt.show()
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▶ The residual plot may suggest slow variation in the residuals,
over a decadal time scale.

▶ Is there short-term dependence? We study this by plotting the
pairwise sample correlations at a range of lags. This is the
sample autocorrelation function, or sample ACF, written
for each lag ℎ as

̂𝜌ℎ =
1
𝑁 ∑𝑁−ℎ

𝑛=1 𝑟𝑛 𝑟𝑛+ℎ
1
𝑁 ∑𝑁

𝑛=1 𝑟𝑛
2

.
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ACF plot
fig, ax = plt.subplots(figsize=(10, 4))
plot_acf(arma11.resid.dropna(), ax=ax, lags=20)
plt.tight_layout()
plt.show()
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▶ This shows no substantial autocorrelation. An ARMA model
may not be a good way to describe the slow variation present
in the residuals of the ARMA(1,1) model.
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Quantifying uncertainty for scientific reproducibility

Usually, omitted dependency in the model will give overconfident
(too small) standard errors.

▶ This leads to scientific reproducibility problems, where chance
variation is too often assigned statistical significance.

▶ It can also lead to improper pricing of risk in financial markets,
a factor in the US financial crisis of 2007-2008.
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Artificial neural network (ANN) methods vs parametric
models

▶ Training an ANN requires extensive data, and is complicated by
dependence.

▶ ANN methods, “deep learning,” are better adapted to
prediction problems than testing hypotheses about causal
mechanisms.

▶ Long short-term memory (LSTM) ANN architectures have
been used for time series forecasting.

▶ This has only a small role in the course.
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AI for data analysis

▶ Methodological choices in data analysis are sometimes limited
by practical difficulties coding up the analysis.

▶ Methods for dependent data involve extra computational
complexities.

▶ AI can provide effective coding support, if it is carefully used.

▶ We focus on quality over quantity to avoid being overwhelmed
by excessive low-quality AI analysis.

▶ We learn AI data analysis by sharing successful techniques.
Please share!

▶ These notes were translated from R to Python using claude
code, with the context set by
https://github.com/ionides/531w25/tree/main/CLAUDE.md
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A first look at a state-space model
Scientists and engineers often have equations in mind to describe a
system they’re interested in. Often, we have a model for how the
state of a stochastic dynamic system evolves through time, and
another model for how imperfect measurements on this system gives
rise to a time series of observations.

This is called a state-space model. The state models the
quantities that we think determine how the system changes with
time. However, these idealized state variables are not usually
directly and perfectly measurable.

Statistical analysis of time series data on a system aims to:

1. Help scientists choose between rival hypotheses.

2. Estimate unknown parameters in the model equations.

We will look at examples from a wide range of scientific applications.
The dynamic model may be linear or nonlinear, Gaussian or
non-Gaussian.
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A finance example: fitting a model for volatility of a stock
market index

▶ Let {𝑦𝑛, 𝑛 = 1, … , 𝑁} be the daily returns on a stock market
index, such as the S&P 500.

▶ The return is the difference of the log of the index. If 𝑧𝑛 is the
index value for day 𝑛, then 𝑦𝑛 = log(𝑧𝑛) − log(𝑧𝑛−1).

▶ Since the stock market is notoriously unpredictable, it is often
unproductive to predict the mean of the returns and instead
there is much emphasis on predicting the variability of the
returns, known as the volatility.

▶ Volatility is critical to assessing the risk of financial
investments.
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A volatility model

Financial mathematicians have postulated the following model. We
do not need to understand it in detail right now. The point is that
we may want to fit and evaluate time series models of interest to
scientists.

𝑌𝑛 = exp {𝐻𝑛
2

} 𝜖𝑛, 𝐺𝑛 = 𝐺𝑛−1 + 𝜈𝑛,

𝐻𝑛 = 𝜇ℎ(1 − 𝜙) + 𝜙𝐻𝑛−1

+ 𝑌𝑛−1𝜎𝜂√1 − 𝜙2 tanh(𝐺𝑛−1 + 𝜈𝑛) exp {−𝐻𝑛−1
2

} + 𝜔𝑛.

▶ {𝜖𝑛} is iid 𝑁(0, 1), {𝜈𝑛} is iid 𝑁(0, 𝜎2
𝜈), {𝜔𝑛} is iid 𝑁(0, 𝜎2

𝜔).

▶ 𝐻𝑛 is unobserved volatility at time 𝑡𝑛, with auto-regressive
behavior, having dependence on 𝑌𝑛−1 and a slowly varying
process 𝐺𝑛. We only observe the return, modeled by 𝑌𝑛.
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Questions to be addressed later in the course
This is an example of a mechanistic model, where scientific or
engineering considerations lead to a proposed model. Now there is
data and a model, it is time to recruit a statistician!

1. How can we get good estimates of the parameters, 𝜇ℎ, 𝜙, 𝜎𝜈,
𝜎𝜔, together with their uncertainties?

2. Does this model fit better than alternative models? So far as it
does, what have we learned?

3. Does the data analysis suggest new models, or the collection of
new data?

Likelihood-based inference for this partially observed stochastic
dynamic system is possible, and enables addressing these questions
[1].

By the end of this course, you will be able to carry out data analysis
developing complex models and fitting them to time series. See past
final projects for 2018, 2020, 2021, 2022, 2024, 2025
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