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General notation for time series data and models

Definition: A time series is a sequence of numbers, called data. In general, we will sup-
pose that there are 𝑁 numbers, 𝑦∗

1, 𝑦∗
2, … , 𝑦∗

𝑁 , collected at an increasing sequence of times,
𝑡1, 𝑡2, … , 𝑡𝑁 .

• We write 1∶𝑁 for the sequence {1, 2, … , 𝑁} and we write the collection of numbers
{𝑦∗

𝑛, 𝑛 = 1, … , 𝑁} as 𝑦∗
1∶𝑁 .

• A time series model is a collection of jointly defined random variables, 𝑌1, 𝑌2, … , 𝑌𝑁 .

• We write this collection of random variables as 𝑌1∶𝑁 .

Joint density function

• Like all jointly defined random variables, the distribution of 𝑌1∶𝑁 is defined by a joint
density function, which we write as

𝑓𝑌1∶𝑁
(𝑦1, … , 𝑦𝑁 ; 𝜃). (1)

• Here, 𝜃 is a vector of parameters.

• The density is defined for arbitrary outcomes 𝑦1∶𝑁 . Its value at the data, 𝑦∗
1∶𝑁 , is called

the likelihood,

𝐿(𝜃) = 𝑓𝑌1∶𝑁
(𝑦∗

1, … , 𝑦∗
𝑁 ; 𝜃). (2)
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Notation for densities

• Our notation for densities generalizes. We write 𝑓𝑌 (𝑦) for the density of a random
variable 𝑌 evaluated at 𝑦, and 𝑓𝑌 𝑍(𝑦, 𝑧) for the joint density of the pair of random
variables (𝑌 , 𝑍) evaluated at (𝑦, 𝑧). We can also write 𝑓𝑌 |𝑍(𝑦 ∣ 𝑧) for the conditional
density of 𝑌 given 𝑍.

• For discrete data, such as count data, our model may also be discrete and we interpret
the density function as a probability mass function. Expectations and probabilities are
integrals for continuous models, and sums for discrete models. Otherwise, everything
remains the same. We will write formulas only for the continuous case. You can swap
integrals for sums when working with discrete models.

• Scientifically, we consider the hypothesis that 𝑦∗
1∶𝑁 is well described as a realization of

𝑌1∶𝑁 for an unknown value of 𝜃.

• Our notation distinguishes between the model, 𝑌1∶𝑁 ; an arbitrary realization of the model,
𝑦1∶𝑁 ; the specific sequence of numbers that we observed as data, 𝑦∗

1∶𝑁 .

• Time series texts commonly ignore these distinctions. For example, Shumway and Stoffer
[2] call all these quantities 𝑦𝑡.

Review: Random variables

Question. What is a random variable?

Question. What is a collection of jointly defined random variables?

Question. What is a probability density function? What is a joint density function? What
is a conditional density function?

Question. What does it mean to say that “𝜃 is a vector of parameters?”

There are different answers to these questions, but you should be able to write down an answer
that you are satisfied with.
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Review: Expectation

Random variables usually have an expected value, and in this course they always do. We
write E[𝑋] for the expected value of a random variable 𝑋.

Question. Review question: What is expected value? How is it defined? How can it fail to
exist for a properly defined random variable?

Trend, also called the mean function

Definition: The mean function, for 𝑛 ∈ 1∶𝑁 , is

𝜇𝑛 = E[𝑌𝑛] = ∫
∞

−∞
𝑦𝑛 𝑓𝑌𝑛

(𝑦𝑛) 𝑑𝑦𝑛

• Mean function and trend are synonyms. We can say model trend to clarify that
this is a property of the model, not data.

• We say “function” since 𝜇𝑛 is formally a function of 𝑛.

• Sometimes, it makes sense to think of time as continuous. Then, we write 𝜇(𝑡) for the
expected value of an observation at time 𝑡. We only make observations at the discrete
collection of times 𝑡1∶𝑁 and so we require 𝜇(𝑡𝑛) = 𝜇𝑛.

• A time series may have measurements evenly spaced in time, but our notation does
not insist on this. Time series data may contain missing values or unequally spaced
observations.

• 𝜇𝑛 may depend on 𝜃, the parameter vector. We can write 𝜇𝑛(𝜃) or 𝜇(𝑡 ; 𝜃) to make this
explicit.

• We write ̂𝜇𝑛(𝑦1∶𝑁) to be some estimator of 𝜇𝑛, i.e., a map which is applied to data to
give an estimate of 𝜇𝑛. An appropriate choice of ̂𝜇𝑛 will depend on the data and the
model.

• The estimated mean function or estimated trend is the value of the estimator when
applied to our data, written as

̂𝜇𝑛 = ̂𝜇𝑛(𝑦∗
1∶𝑁). (3)

• ̂𝜇𝑛 denotes both the estimator function and its value evaluated at 𝑦∗
1∶𝑁 . This is standard

terminology for data analysis. The ambiguity can be clarified when it is helpful.
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Mean stationary models

Definition: If 𝜇𝑛 = 𝜇, so the mean is assumed constant, the model is called mean station-
ary.

In this case, we might estimate 𝜇 using the mean estimator,

̂𝜇(𝑦1∶𝑁) = 1
𝑁

𝑁
∑
𝑛=1

𝑦𝑛. (4)

• ̂𝜇 = ̂𝜇(𝑦∗
1∶𝑁) is the sample mean or data mean.

• We can compute ̂𝜇 for any dataset. It is only a reasonable estimate of the mean function
when a mean stationary model is appropriate.

• Data cannot formally be mean stationary. Mean stationarity is a property of a model.

Properties of models vs properties of data

Question. Properties of models vs properties of data.

Consider these two statements. Does is matter which we use?

1. “The data look mean stationary.”
2. “A mean stationary model looks appropriate for these data.”

Autocovariance and autocorrelation

Definition: Assuming that variances and covariances exist for the random variables 𝑌1∶𝑁 , we
write

𝛾𝑚,𝑛 = Cov(𝑌𝑚, 𝑌𝑛) = E[(𝑌𝑚 − 𝜇𝑚)(𝑌𝑛 − 𝜇𝑛)]. (5)

This is the autocovariance function, a function of 𝑚 and 𝑛.

• We write Γ for the 𝑁 × 𝑁 matrix whose (𝑚, 𝑛) entry is 𝛾𝑚,𝑛.

Definition: If the covariance between two observations depends only on their time difference,
the time series model is covariance stationary. For observations equally spaced in time, the
autocovariance function is a function of a lag, ℎ,

𝛾ℎ = 𝛾𝑛,𝑛+ℎ. (6)
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• For a covariance stationary model, and a mean estimate ̂𝜇𝑛, an estimate for 𝛾ℎ is the
sample autocovariance function,

̂𝛾ℎ = 1
𝑁

𝑁−ℎ
∑
𝑛=1

(𝑦𝑛 − ̂𝜇𝑛) (𝑦𝑛+ℎ − ̂𝜇𝑛+ℎ). (7)

Definition: Dividing the autocovariance by the variance gives the autocorrelation function
𝜌ℎ,

𝜌ℎ = 𝛾ℎ
𝛾0

.

We can analogously construct the standard autocorrelation estimator,

̂𝜌ℎ(𝑦1∶𝑁) = ̂𝛾ℎ(𝑦1∶𝑁)
̂𝛾0(𝑦1∶𝑁) ,

which leads to an estimate known as the sample autocorrelation,

̂𝜌ℎ = ̂𝜌ℎ(𝑦∗
1∶𝑁) = ̂𝛾ℎ

̂𝛾0
.

• It is common to use ACF as an acronym for any or all of the autocorrelation function,
sample autocorrelation function, autocovariance function, and sample autocovariance
function. If you use the acronym ACF, it is good to remove ambiguity by
defining it.

Sample statistics exist without a model

• The sample autocorrelation and sample autocovariance functions are statistics computed
from the data. They exist, and can be computed, even when the data are not well
modeled as covariance stationary. However, in that case, it does not make sense to view
them as estimators of the autocorrelation and autocovariance functions (which exist as
functions of a lag ℎ only for covariance stationary models).

• Formally, we should not talk about the correlation or covariance of data. These are prop-
erties of models. We can talk about the sample autocorrelation or sample autocovariance
of data.
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Least squares estimation of a trend

We analyze a time series of global mean annual temperature from https://climate.nasa.gov/v
ital-signs/global-temperature/.
These data are in degrees Celsius measured as an anomaly from a 1951-1980 base. This
is climatology jargon for saying that the sample mean of the temperature over the interval
1951-1980 was subtracted from all time points.

global_temp = pd.read_csv("Global_Temperature.txt",
sep='\s+', comment='#', engine='python')

print(global_temp.head(3))

Year Annual Smoothed
0 1880 -0.18 -0.11
1 1881 -0.10 -0.14
2 1882 -0.12 -0.18

<>:2: SyntaxWarning: invalid escape sequence '\s'
<>:2: SyntaxWarning: invalid escape sequence '\s'
/var/folders/06/knh9m6tn4rzf4zn3h_0c8qtr0000gs/T/ipykernel_33151/2862756596.py:2: SyntaxWarning: invalid escape sequence '\s'
sep='\s+', comment='#', engine='python')

Time series plot code

plt.figure(figsize=(10, 4))
plt.plot(global_temp['Year'],

global_temp['Annual'], '-')
plt.xlabel('Year')
plt.ylabel('Temperature anomaly (°C)')
plt.tight_layout()
plt.show()
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Mean global temperature anomaly, degrees C

Climate change and statistical analysis

• These data should make all of us pause for thought about the future of our planet.

• Understanding climate change involves understanding a highly complex system of physi-
cal, chemical and biological processes. It is hard to know if gigantic models that attempt
to capture all important parts of the global climate dynamics are an accurate description
of what is happening.

• There is value in statistical analysis, which can tell us what evidence there is for how
things are, or are not, changing.

A quote from Science (18 December 2015, volume 350, page 1461) remains pertinent:

“Scientists are still debating whether—and, if so, how—warming in the Arctic and dwindling
sea ice influences extreme weather events at midlatitudes. Model limitations, scarce data
on the warming Arctic, and the inherent variability of the systems make answers elusive.”

Fitting a least squares model with a quadratic trend

Perhaps the simplest trend model that makes sense looking at these data is a quadratic trend,

𝜇(𝑡) = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2. (8)

To write the least squares estimate of 𝛽0, 𝛽1 and 𝛽2, we set up matrix notation. Write

𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑁)⊤ (9)
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for the column vector describing the mean function, and similarly,

𝛽 = (𝛽0, 𝛽1, 𝛽2)⊤. (10)

Design matrix

Then, defining

𝑍 =
⎛⎜⎜⎜⎜
⎝

1 1880 18802

1 1881 18812

1 1882 18822

⋮ ⋮ ⋮

⎞⎟⎟⎟⎟
⎠

, (11)

we can write
𝜇 = 𝑍𝛽.

OLS estimator

We write 𝑦1∶𝑁 as a column vector,

𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁)⊤. (12)

The ordinary least squares (OLS) estimator of 𝛽 is

̂𝛽OLS(𝑦1∶𝑁) = (𝑍⊤𝑍)−1𝑍⊤𝑦, (13)

with corresponding OLS estimate

̂𝛽OLS = ̂𝛽OLS(𝑦∗
1∶𝑁) = (𝑍⊤𝑍)−1𝑍⊤𝑦∗.

Fitting the model in Python

We can carry out this computation in Python by

global_temp['Year_sq'] = global_temp['Year'] ** 2
lm_fit = ols('Annual ~ Year + Year_sq',

data=global_temp).fit()

print(lm_fit.summary())
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OLS Regression Results
==============================================================================
Dep. Variable: Annual R-squared: 0.906
Model: OLS Adj. R-squared: 0.905
Method: Least Squares F-statistic: 687.0
Date: Fri, 16 Jan 2026 Prob (F-statistic): 9.64e-74
Time: 11:46:44 Log-Likelihood: 102.02
No. Observations: 145 AIC: -198.0
Df Residuals: 142 BIC: -189.1
Df Model: 2
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 338.8755 24.425 13.874 0.000 290.592 387.159
Year -0.3555 0.025 -14.200 0.000 -0.405 -0.306
Year_sq 9.315e-05 6.41e-06 14.528 0.000 8.05e-05 0.000
==============================================================================
Omnibus: 4.057 Durbin-Watson: 0.862
Prob(Omnibus): 0.132 Jarque-Bera (JB): 3.777
Skew: 0.394 Prob(JB): 0.151
Kurtosis: 3.069 Cond. No. 9.28e+09
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 9.28e+09. This might indicate that there are
strong multicollinearity or other numerical problems.

We can check visually how well this model fits the data.

yr = np.arange(1880, 2027)
X_pred = np.column_stack([np.ones(len(yr)),yr,yr**2])
beta = lm_fit.params.values
prediction = X_pred @ beta
plt.figure(figsize=(10, 4))
plt.plot(global_temp['Year'], global_temp['Annual'],

'k--', label='Observed')
plt.plot(yr, prediction, 'r-', linewidth=2,

label='Fitted trend')
plt.xlabel('Year')
plt.ylabel('Temperature anomaly (°C)')
plt.xlim(yr.min(), yr.max())
plt.legend()
plt.tight_layout()
plt.show()
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Fitted trend plot

Assessment

• The overall estimated trend seems a reasonable fit for the data.

• If we want to attach uncertainty to our parameter estimates, and consequently to our
forecast, we need a time series model 𝑌1∶𝑁 , which we write in column vector form as

𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑁)⊤.

White noise error model

The usual model behind OLS is the independent error model, known in time series analysis as
the white noise error model:

[L1] 𝑌 = 𝑍𝛽 + 𝜖,
where 𝜖 = 𝜖1∶𝑁 is a vector of independent identically distributed (iid) random variables with
mean zero and constant variance, E[𝜖𝑛] = 0 and Var(𝜖𝑛) = 𝜎2.

• Standard linear model software, such as ols in Python’s statsmodels, provides confi-
dence intervals based on this model.
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For model L1, the estimator ̂𝛽OLS(𝑦1∶𝑁) is unbiased, since

E[ ̂𝛽OLS(𝑌1∶𝑁)] = E[(𝑍⊤𝑍)−1𝑍⊤𝑌 ]
= E[(𝑍⊤𝑍)−1𝑍⊤{𝑍𝛽 + 𝜖}]
= (𝑍⊤𝑍)−1𝑍⊤{𝑍𝛽 + E[𝜖]}
= (𝑍⊤𝑍)−1(𝑍⊤𝑍)𝛽
= 𝛽

• A result for linear models is that ̂𝛽OLS(𝑦1∶𝑁) is the minimum variance unbiased estimator
for model L1.

Variance/covariance for the white noise error model

• The variance/covariance matrix of ̂𝛽OLS(𝑌1∶𝑁) under this model [1] is

Var[ ̂𝛽OLS(𝑌1∶𝑁)] = 𝜎2(𝑍⊤𝑍)−1,

which is estimated using an estimate for 𝜎 of

𝜎̂OLS = √ 1
𝑁 − 𝑑(𝑦 − 𝑍 ̂𝛽OLS)⊤(𝑦 − 𝑍 ̂𝛽OLS),

where 𝑑 is the number of covariates, i.e., the number of columns of 𝑍.

Autocorrelated residuals and trend estimation

Let’s look at the residuals to assess how appropriate this model is here.

fig, ax = plt.subplots(figsize=(10, 4))
plot_acf(lm_fit.resid, ax=ax, lags=20,

bartlett_confint=False)
plt.tight_layout()
plt.show()
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Investigating the ACF plot

• The horizontal shaded region on the sample autocorrelation function (ACF) gives a
measure of chance variation under the null hypothesis that the residuals are iid.

• At each lag ℎ, the chance that the estimated ACF falls within this band is approximately
95%, under the null hypothesis.

• Thus, under the null hypothesis, one expects a fraction of 1/20 of the lags of the sample
ACF to fall outside this band.

• Here, the sample ACF confirms what we can probably see from the plot of the fitted
model: the variation around the fitted model is clustered in time, so the sample ACF of
the residuals is not consistent with a model having independent error terms.

Question. How does Python/statsmodels construct these horizontal dashed lines?

Understanding confidence bands

• The confidence bands use a normal distribution approximation for the sample autocor-
relation estimator, with mean zero and standard deviation 1/

√
𝑁 .

• For 95% confidence, the bands are approximately at ±1.96/
√

𝑁 .

• This approximation is appropriate when the residuals are truly independent (under the
null hypothesis).
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Generalized least squares for trend estimation

Suppose that we knew the covariance matrix, Γ, for a model with dependent errors,

[L2] 𝑌 = 𝑍𝛽 + 𝜁, 𝜁 ∼ 𝑁[0, Γ].
We read “𝜁 ∼ 𝑁[0, Γ]” as “𝜁 follows a multivariate normal distribution with mean zero and
covariance matrix Γ.”

• The minimum variance unbiased estimator of 𝛽 for model L2 is the generalized least
square (GLS) estimator [1, Chapter 5]

̂𝛽GLS(𝑦1∶𝑁) = (𝑍⊤Γ−1𝑍)−1 𝑍⊤Γ−1𝑦.

• The OLS estimator remains unbiased for L2 (you can check this as an exercise). In this
sense it remains a reasonable estimator. It is often a practical solution to use the OLS
estimator, especially for preliminary data analysis. We don’t know Γ so can’t necessarily
make a good estimator based on the GLS model. It might be easier to get an estimate
of Γ once we have a reasonable estimate of the trend.

Variance under model L2

• For model L2, the variance of the OLS estimator is

Var[ ̂𝛽OLS(𝑌1∶𝑁)] = (𝑍⊤𝑍)−1 𝑍⊤Γ𝑍 (𝑍⊤𝑍)−1. (14)

This is different from the variance under model L1.

• CONCLUSION. It is okay to do ordinary linear regression for data which are
not well modeled with uncorrelated errors. However, if we do so, we should
not trust the error estimates coming from L1.

• This is an example of a situation where some parts of the output from statistical software
are reasonable (here, the parameter estimates from ols) and other parts are unreasonable
(the corresponding standard errors and any tests based on them). The theory helps us
decide which bits of computer output to use and which to ignore.
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