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General notation for time series data and models

Definition: A time series is a sequence of numbers, called data.
In general, we will suppose that there are N numbers,
Y1, Y5, -, Yn, collected at an increasing sequence of times,

tl, t2, e 7tN.

P We write 1: NV for the sequence {1,2,..., N} and we write the
collection of numbers {y,n=1,..., N} as y}. -

P A time series model is a collection of jointly defined random
variables, Y}, Y,, ..., Y.

P> We write this collection of random variables as Y. .
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Joint density function

P Like all jointly defined random variables, the distribution of
Y,.n is defined by a joint density function, which we write as

Fy @5 yn; 0)- (1)

P Here, 0 is a vector of parameters.

P> The density is defined for arbitrary outcomes ;.. Its value
at the data, yj. 5. is called the likelihood,

L0) = fy, ,(Wis-syns 0). (2)
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Notation for densities

P Our notation for densities generalizes. We write fy (y) for the
density of a random variable Y evaluated at y, and fy (v, 2)
for the joint density of the pair of random variables (Y, Z)
evaluated at (y,2). We can also write fy4(y | 2) for the
conditional density of Y given Z.

P> For discrete data, such as count data, our model may also be
discrete and we interpret the density function as a probability
mass function. Expectations and probabilities are integrals for
continuous models, and sums for discrete models. Otherwise,
everything remains the same. We will write formulas only for
the continuous case. You can swap integrals for sums when
working with discrete models.
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P Scientifically, we consider the hypothesis that yj,  is well
described as a realization of Y7, for an unknown value of 6.

P Our notation distinguishes between the model, Y}, y; an
arbitrary realization of the model, y;.5; the specific sequence
of numbers that we observed as data, y7, -

P Time series texts commonly ignore these distinctions. For
example, Shumway and Stoffer [2] call all these quantities y,.

5/36



Review: Random variables

Question. What is a random variable?
Question. What is a collection of jointly defined random variables?

Question. What is a probability density function? What is a joint
density function? What is a conditional density function?

Question. What does it mean to say that "6 is a vector of
parameters?”

There are different answers to these questions, but you should be
able to write down an answer that you are satisfied with.

6/36



Review: Expectation

Random variables usually have an expected value, and in this
course they always do. We write E[X] for the expected value of a
random variable X.

Question. Review question: What is expected value? How is it
defined? How can it fail to exist for a properly defined random
variable?
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Trend, also called the mean function

Definition: The mean function, for n € 1: N, is

ty, = E[Y,] = / Yo fy, (Un) dy,,

P Mean function and trend are synonyms. We can say model
trend to clarify that this is a property of the model, not data.

P We say “function” since p,, is formally a function of n.

P> Sometimes, it makes sense to think of time as continuous.
Then, we write p(t) for the expected value of an observation
at time t. We only make observations at the discrete
collection of times ¢,y and so we require p(t,,) = L,

P> A time series may have measurements evenly spaced in time,
but our notation does not insist on this. Time series data may
contain missing values or unequally spaced observations.
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P 1, may depend on 6, the parameter vector. We can write
,,(60) or u(t; 0) to make this explicit.

P We write fi,,(y;.5) to be some estimator of p,,, i.e., a map
which is applied to data to give an estimate of f,,. An
appropriate choice of fi,, will depend on the data and the
model.

P The estimated mean function or estimated trend is the
value of the estimator when applied to our data, written as

P /i, denotes both the estimator function and its value

evaluated at y7,. This is standard terminology for data
analysis. The ambiguity can be clarified when it is helpful.
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Mean stationary models
Definition: If ;1,, = i, so the mean is assumed constant, the
model is called mean stationary.

In this case, we might estimate y using the mean estimator,
Yy Z Y- (4)

» [ = a(y;.y) is the sample mean or data mean.

P We can compute /i for any dataset. It is only a reasonable
estimate of the mean function when a mean stationary model
is appropriate.

P Data cannot formally be mean stationary. Mean stationarity is
a property of a model.
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Properties of models vs properties of data

Question. Properties of models vs properties of data.
Consider these two statements. Does is matter which we use?

1. “The data look mean stationary.”
2. "A mean stationary model looks appropriate for these data.”
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Autocovariance and autocorrelation

Definition: Assuming that variances and covariances exist for the
random variables Y7, , we write

This is the autocovariance function, a function of m and n.

P We write T for the N x N matrix whose (m, n) entry is 7, ..

Definition: If the covariance between two observations depends
only on their time difference, the time series model is covariance
stationary. For observations equally spaced in time, the
autocovariance function is a function of a lag, h,

T = ’Yn,nJrh‘ (6)

P> For a covariance stationary model, and a mean estimate o,
an estimate for ;, is the sample autocovariance function,
1 N=h
Y = I Z (Yn = ) Y, — Bnsn)- (7)

n=1
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Definition: Dividing the autocovariance by the variance gives the

autocorrelation function p;,,

Th
Pn=_"-
Yo

We can analogously construct the standard autocorrelation
estimator,

~ ah(y1:N>
Pr(y1n) = 27—
Yo(Y1:n)
which leads to an estimate known as the sample autocorrelation,
L Vi
Pn = Pn(¥iN) = 2
Yo

P It is common to use ACF as an acronym for any or all of the
autocorrelation function, sample autocorrelation function,
autocovariance function, and sample autocovariance function.
If you use the acronym ACEF, it is good to remove
ambiguity by defining it.
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Sample statistics exist without a model

P The sample autocorrelation and sample autocovariance
functions are statistics computed from the data. They exist,
and can be computed, even when the data are not well
modeled as covariance stationary. However, in that case, it
does not make sense to view them as estimators of the
autocorrelation and autocovariance functions (which exist as
functions of a lag h only for covariance stationary models).

P Formally, we should not talk about the correlation or
covariance of data. These are properties of models. We can
talk about the sample autocorrelation or sample
autocovariance of data.
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L east squares estimation of a trend

We analyze a time series of global mean annual temperature from
https://climate.nasa.gov/vital-signs/global-temperature/.

These data are in degrees Celsius measured as an anomaly from a
1951-1980 base. This is climatology jargon for saying that the
sample mean of the temperature over the interval 1951-1980 was
subtracted from all time points.

global_temp = pd.read_csv("Global_Temperature.txt",
sep='\s+', comment='#', engine='python')
print (global_temp.head(3))

Year Annual Smoothed

0 1880 -0.18 -0.11
1 1881 -0.10 -0.14
2 1882 -0.12 -0.18
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Time series plot code

plt.figure(figsize=(10, 4))

plt.plot(global_temp['Year'],
global_temp['Annual'l, '-')

plt.xlabel('Year')

plt.ylabel('Temperature anomaly (°C)')

plt.tight_layout ()

plt.show()
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Climate change and statistical analysis

P These data should make all of us pause for thought about the
future of our planet.

P Understanding climate change involves understanding a highly
complex system of physical, chemical and biological processes.
It is hard to know if gigantic models that attempt to capture
all important parts of the global climate dynamics are an
accurate description of what is happening.

P There is value in statistical analysis, which can tell us what
evidence there is for how things are, or are not, changing.

A quote from Science (18 December 2015, volume 350, page 1461)
remains pertinent:

“Scientists are still debating whether—and, if so, how—warming in

the Arctic and dwindling sea ice influences extreme weather events

at midlatitudes. Model limitations, scarce data on the warming
Arctic, and the inherent variability of the systems make answers
elusive.” 18/36



Fitting a least squares model with a quadratic trend

Perhaps the simplest trend model that makes sense looking at
these data is a quadratic trend,

p(t) = By + Bt + Byt*. (8)

To write the least squares estimate of /3, 5; and (35, we set up
matrix notation. Write

= (1, fros s i) " (9)

for the column vector describing the mean function, and similarly,

/6 = (50751752)T~ (10)
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Design matrix

Then, defining

1 1880 18802
1 1881 18812

Z=11 1882 18822 | (11)

we can write
w=2Zp.
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OLS estimator

We write ;. as a column vector,
Yy = (y17y27'--7yN)T' (12)

The ordinary least squares (OLS) estimator of /3 is

50LS<2/1 N) = (ZTZ) 1ZT% (13)

with corresponding OLS estimate

50Ls 50LS(?J1N> (ZTZ) ' ZTyr
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Fitting the model in Python

We can carry out this computation in Python by

global_temp['Year_sq'] = global_temp['Year'] x*x 2
lm_fit = ols('Annual ~ Year + Year_sq',
data=global_temp) .fit ()

print (Im_fit.summary())
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OLS Regression Results

Dep. Variable: Annual R-squared: 0.906
Model: OLS  Adj. R-squared: 0.905
Method: Least Squares F-statistic: 687.0
Date: Fri, 16 Jan 2026 Prob (F-statistic): 9.64e-74
Time: 11:46:31  Log-Likelihood: 102.02
No. Observations: 145  AIC: -198.0
Df Residuals: 142  BIC: -189.1
Df Model: 2
Covariance Type: nonrobust

coef std err t P>|tl [0.025 0.975]
Intercept 338.8755 24.425 13.874 0.000 290.592 387.159
Year -0.3555 0.025 -14.200 0.000 -0.405 -0.306
Year_sq 9.3165e-05 6.41e-06 14.528 0.000 8.05e-05 0.000
Omnibus: 4.057 Durbin-Watson: 0.862
Prob(Omnibus) : 0.132  Jarque-Bera (JB): 3.777
Skew: 0.394 Prob(JB): 0.151
Kurtosis: 3.069 Cond. No. 9.28e+09
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctl
[2] The condition number is large, 9.28e+09. This might indicate that there are

strong multicollinearity or other numerical problems. 23/36



We can check visually how well this model fits the data.

yr = np.arange (1880, 2027)

X_pred = np.column_stack([np.ones(len(yr)),yr,yr**2])

beta = Im_fit.params.values

prediction = X_pred Q@ beta

plt.figure(figsize=(10, 4))

plt.plot(global_temp['Year'], global_temp['Annual'],
'k--', label='Observed')

plt.plot(yr, prediction, 'r-', linewidth=2,
label='Fitted trend')

plt.xlabel('Year')

plt.ylabel (' Temperature anomaly (°C)')

plt.xlim(yr.min(), yr.max())

plt.legend ()

plt.tight_layout ()

plt.show()
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Fitted trend plot
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Assessment

P The overall estimated trend seems a reasonable fit for the
data.

P> If we want to attach uncertainty to our parameter estimates,
and consequently to our forecast, we need a time series model
Y,.n» which we write in column vector form as

Y - <Y17 }/27 ,}/]V)T
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White noise error model

The usual model behind OLS is the independent error model,
known in time series analysis as the white noise error model:

[L1] Y = ZB +e,

where € = €, is a vector of independent identically distributed
(iid) random variables with mean zero and constant variance,
Ele,] = 0 and Var(e,,) = o2.

P Standard linear model software, such as ols in Python's
statsmodels, provides confidence intervals based on this
model.
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For model L1, the estimator BAOLS(yLN) is unbiased, since

E[Bors(Yin)] = E[(Z272)7'ZTY]
_ E[(Z72)127{28+¢))
= (Z2'Z)'Z"{ZB +Ele]}
VAMARVANAL:
B

P A result for linear models is that ,BAOLS(yLN) is the minimum
variance unbiased estimator for model L1.
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Variance/covariance for the white noise error model

P The variance/covariance matrix of BAOLS(YLN) under this
model [1] is

Var[BOLS(YLN)] = Uz(ZTZYlv

which is estimated using an estimate for o of

- 1 ~ T -
doLs = \/N—d(y_ ZBows) (¥ —ZBovs),

where d is the number of covariates, i.e., the number of
columns of Z.
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Autocorrelated residuals and trend estimation

Let's look at the residuals to assess how appropriate this model is
here.

fig, ax = plt.subplots(figsize=(10, 4))

plot_acf(lm_fit.resid, ax=ax, lags=20,
bartlett confint=False)

plt.tight_layout ()

plt.show()
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Investigating the ACF plot

P The horizontal shaded region on the sample autocorrelation
function (ACF) gives a measure of chance variation under the
null hypothesis that the residuals are iid.

P> At each lag h, the chance that the estimated ACF falls within
this band is approximately 95%, under the null hypothesis.

P Thus, under the null hypothesis, one expects a fraction of
1/20 of the lags of the sample ACF to fall outside this band.

P Here, the sample ACF confirms what we can probably see
from the plot of the fitted model: the variation around the
fitted model is clustered in time, so the sample ACF of the
residuals is not consistent with a model having independent
error terms.

Question. How does Python/statsmodels construct these
horizontal dashed lines?
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Understanding confidence bands

P The confidence bands use a normal distribution approximation
for the sample autocorrelation estimator, with mean zero and
standard deviation 1/v/N.

P For 95% confidence, the bands are approximately at

+1.96/V'N.

P> This approximation is appropriate when the residuals are truly
independent (under the null hypothesis).
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Generalized least squares for trend estimation

Suppose that we knew the covariance matrix, I', for a model with
dependent errors,

[L2] Y =78+, ¢ ~ NJ[0,T].

We read “¢ ~ N[0,I']" as “( follows a multivariate normal
distribution with mean zero and covariance matrix I'."

P The minimum variance unbiased estimator of 3 for model L2
is the generalized least square (GLS) estimator [1, Chapter 5]

3 —1
Bars(in) = (Z2'T71Z) ~Z'T 1y,

P The OLS estimator remains unbiased for L2 (you can check
this as an exercise). In this sense it remains a reasonable
estimator. It is often a practical solution to use the OLS
estimator, especially for preliminary data analysis. We don't
know I' so can't necessarily make a good estimator based on
the GLS model. It might be easier to get an estimate of T’
once we have a reasonable estimate of the trend. 33/36



Variance under model L2
P For model L2, the variance of the OLS estimator is
Var[BOLS(Yl:N)] =(Z"'Z)ytZ'rz(Z"Z)"". (14)

This is different from the variance under model L1.

» CONCLUSION. It is okay to do ordinary linear
regression for data which are not well modeled with
uncorrelated errors. However, if we do so, we should not
trust the error estimates coming from L1.

P This is an example of a situation where some parts of the
output from statistical software are reasonable (here, the
parameter estimates from ols) and other parts are
unreasonable (the corresponding standard errors and any tests
based on them). The theory helps us decide which bits of
computer output to use and which to ignore.
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