Modeling and Analysis of Time Series Data
Chapter 3: Stationarity, white noise, and some

basic time series models
STATS 531, Winter 2026

Edward Ionides

Concepts of stationarity

Definition: A time series model which is both mean stationary and covariance stationary is
weakly stationary or second order stationary. A time series model for which all joint
distributions are invariant to shifts in time is strongly stationary or strictly stationary.

o Formally, this means that for any collection of times (,,t,, ..., tj), the joint distribution
of observations at these times should be the same as the joint distribution at (t; +7,t, +
T,...,tp +7) for any 7.

o For equally spaced observations, this becomes: for any collection of timepoints ny, ..., ng,
and for any lag h, the joint density function of (Yn1 S SSPPRE YnK) is the same as the joint
density function of (Y, (4, Y, ipsees Yo, 1n)-

e In our general notation for densities, this strict stationarity requirement can be written
as

Iy, v v (Y12 s Yr)

7L17 7L27"'7 7LK
= fy, Y, YHKHL(yl?yQa'"vyK)' (1)

ni+hstngt+hs

o Strict stationarity implies weak stationarity (check this).

Assessing stationarity

Question. How could we assess whether a weak stationary model is appropriate for a time
series dataset?

Question. How could we assess whether a strictly stationary model is appropriate for a time
series dataset?

Prevalence of stationarity

Question. Is it usual for time series to be well modeled as stationary (either weakly or
strictly)?

Question. If data often do not show stationary behavior, why do many fundamental models
have stationarity?

Question. Is a stationary model appropriate for either (or both) the time series below?
Explain.

-2 4

-3 4

-4

0 10 20 30 40 50 0 100 200 300 400 500

White noise

Definition: A time series model €,y which is weakly stationary with

Ele,] = 0

n]
o?, ifm=n
Covtenn) = {0 o

is said to be white noise with variance o2.
e “Noise” is because there’s no pattern, just random variation. If you listened to a realiza-
tion of white noise as an audio file, you would hear a static sound.

e “White” is because all frequencies are equally represented. This will become clear when
we do frequency domain analysis of time series.

e Signal processing—sending and receiving signals on noisy channels—was a motivation
for early time series analysis.

Example: Gaussian white noise

In time series analysis, a sequence of independent identically distributed (iid) Normal random
variables with mean zero and variance o2 is known as Gaussian white noise. We write this

model as
€1.n ~ iid N[0, o2].

Example: Binary white noise

Let €;. be iid with

. _ 1, with probability 1/2
" | —1, with probability 1/2

We can check that E[e,] = 0, Var(e,,) = 1 and Cov(e,,,€,,) = 0 for m # n. Therefore, €,y is
white noise.

Similarly, for any p € (0,1), we could have

. _ (1—p)/p, with probability p
oo -1, with probability 1 — p

Example: Sinusoidal white noise

Let €,, = sin(2mnU), with a single draw U ~ Uniform[0, 1] determining the time series model
for all n € 1 : N. We will show this is an example of a weakly stationary time series that is
not strictly stationary.

Question. Show that €, is weakly stationary, and is white noise!

Question. Show that €;,5 is NOT strictly stationary.

Hint: consider the following plot of €,,5 as a function of U.

1.00 A
0.75 4
0.50 A
0.25 4
0.00 A
—0.25 1
—0.50
—0.75 1

—1.00 A

0.0 0.2 0.4 0.6 0.8 1.0

Building time series models using white noise

Reminder: Why do we need time series models?

All statistical tests (i.e., whenever we use data to answer a question) rely on having a
model for the data. The model is sometimes called the assumptions for the test.

If our model is wrong, then any conclusions drawn from it may be wrong. Our error
could be small and insignificant, or disastrous.

Time series data collected close in time are often more similar than a model with iid
variation would predict. We need models that have this property, and we must work out
how to test interesting hypotheses for these models.

The AR(p) autoregressive model

[M1]

The order p autoregressive model, abbreviated to AR(p), is

Yn - ¢1Yn71 + ¢2Yn72 +oet (bpYnfp + €

where {e¢,} is a white noise process.

Often, we consider the Gaussian AR(p) model, where {¢, } is a Gaussian white noise
process.

M1 is a stochastic difference equation. It is a difference equation (also known as
a recurrence relation) since each time point is specified recursively in terms of previous
time points. Stochastic just means random.

M1 is centered, with mean zero. We can add a mean parameter.

Initialization of AR models

To complete the model, we need to initialize the solution to the stochastic difference
equation. Supposing we want to specify a distribution for Y], 5, we have some choices in
how to set up the initial values.

. We can specify Y}, explicitly, to get the recursion started.
. We can specify Y;_,,, explicitly.

For either of these choices, we can define these initial values either to be additional
parameters in the model (i.e., not random) or to be specified random variables.

. If we want our model is strictly stationary, we must initialize so that Y;,, have the proper

joint distribution for this stationary model.

https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/wiki/Recurrence_relation

AR(1) example

o Assuming the initialization has mean zero, M1 implies that E[Y, | = 0 for all n. For
additional generality, we could add a constant mean p.

o Let’s investigate a particular Gaussian AR(1) process, as an exercise:
[M2] Y, =0.6Y,_;+e¢,,
where €, ~ iid N[0, 1]. We will initialize with Y; ~ N[0, 1.56].

Simulating an autoregressive model

Looking at simulated sample paths is a good way to get intuition about a random process
model. First, we do this for the AR(1) model M2 using the ARIMA simulation functionality
in statsmodels.

np.random.seed(11235)

Simulate AR(1) with phi=0.6

arparams = np.array([0.6])

ar = np.r_[1, -arparams]

ma = np.array([1])

arl_process = ArmaProcess(ar, ma)

arl = arl_process.generate_sample (nsample=100,
scale=1.0)

plt.figure(figsize=(10, 4))

plt.plot(arl); plt.ylabel('arl')

plt.tight_layout(); plt.show()

AR(1) simulation plot

0 20 40 60 80 100

Interpreting simulations

¢ Does your intuition tell you that these simulated data are evidence for a model with a
linear trend?

e The eye looks for patterns in data, and often finds them even when there is no strong
statistical evidence. It is easy to see patterns even in white noise. Dependent models
produce spurious patterns even more often.

e That is why we need statistical tests!

o Fitting the usual OLS regression model results in a highly statistically significant trend
estimate. We need methods that allow for dependence.

¢ Play with simulating different models with different seeds to train your intuition.

Direct simulation of AR(1)
We can also simulate model M2 directly by writing the model equation:

np.random.seed(11235)
N = 100
X = np.zeros(N)
X[0] = np.random.normal(0, np.sqrt(1.56))
for n in range(l, N):
X[n] = 0.6 * X[n-1] + np.random.normal(0, 1)
plt.figure(figsize=(10, 4))

plt.plot(X)
plt.ylabel('X')
plt.tight_layout ()
plt.show()

Direct simulation plot

0 20 40 60 80 100

In this case, generate_sample exactly matches the direct approach.

Question. What are the advantages and disadvantages of using library simulation functions
over the direct simulation method?

Question. Compute the autocovariance function for model M2.

The MA(q) moving average model

e The order ¢ moving average model, abbreviated to MA(q), is
[M3] Y,=¢,+016, 1+ +0,6,
where {¢,, } is a white noise process.

o To fully specify Y},y we must specify the joint distribution of €;_, .

o Often, we consider the Gaussian MA (q) model, where {¢,} is a Gaussian white noise
process.

o In M3, we’ve defined a zero mean process. We could add a mean .

o Let’s investigate a particular Gaussian MA(2) process, as an exercise.
[M4] Y, =¢€,+ 156, | +€, o,
where €,, ~ iid N[0, 1].

Simulating a moving average model
We can simulate M4 using statsmodels or directly.

N = 100

np.random.seed (11235)

Using statsmodels

maparams = np.array([1.5, 1])

ar = np.array([1])

ma = np.r_[1, maparams]

ma_process = ArmaProcess(ar, ma)

X1 = ma_process.generate_sample(nsample=N, scale=1.0)

Direct simulation
np.random.seed (11235)
epsilon = np.random.randn(N+2)
X2 = np.zeros(N)
for n in range(N):
X2[n] = epsilon[n+2]+1.5%epsilon[n+1]+epsilon[n]

MA simulation plots

6 6
4 4
2 2
— o~
> >
01 0 -
-2 1 -2
-4 1 -4
0 20 40 60 80 100 0 20 40 60 80 100

Comparing simulations
e The two methods look similar, with a lag shift. We can check this is true:

test_equal=np.allclose(X1[-(N-2):],X2[:N-2])
print (£"X1 and X2 close: {test_equall}")

X1 and X2 close: True

o Is the spurious evidence for a trend that we saw for the AR(1) model still present for the
MA(2) simulation? Let’s see if we can also see it in the underlying white noise process:

White noise visualization

N = 100

np.random.seed(11235)

epsilon = np.random.randn(N)
plt.figure(figsize=(10, 4))
plt.plot(epsilon); plt.ylabel('epsilon')
plt.tight_layout(); plt.show()

10

epsilon

0 20 40 60 80 100

Definition:. The random walk model is
[M5] Yn = Ynfl + €ns
where {¢, } is white noise. Unless otherwise specified, we usually initialize with Y, = 0.

If {¢,,} is Gaussian white noise, we have a Gaussian random walk.
The random walk model is a special case of AR(1) with ¢; = 1.

The stochastic difference equation in M5 has an exact solution,

n

Y, = Zek.

k=1
We can also call Y|,y an integrated white noise process. We think of summation as a
discrete version of integration.

If data y;.5 are modeled as a random walk, the value of Y|, is usually an unknown. We can
treat this as an unknown parameter, or initialize our model at time ¢; with Y} = y7.

Definition: The first difference time series z,. 5 is defined by

Zn = Ayn =Yn —Yn-1 (2)

e From a time series of length NV, we only get N — 1 first differences.

11

o A random walk model for y;, 5 is essentially equivalent to a white noise model for z,, ;y =

Ays. n, apart from the issue of initialization.

Definition: The random walk with drift model is given by the difference equation

[MG6]

Yn :Yn—l +,LL+€n,

driven by a white noise process {¢, }. This has solution

n
Yn:Yo—knp—l—Zek.

k=1

e Here, u is the mean of the increments rather than the random walk process itself.

o As for the random walk without drift, we must define Y| to initialize the model and
complete the model specification. Unless otherwise specified, we usually initialize with

Y, = 0.

Modeling financial markets as a random walk

The theory of efficient financial markets suggests that the logarithm of a stock market index
(or the value of an individual stock, or other investment) might behave like a random walk
with drift. We test this on daily S&P 500 data.

Sp =

pd.read_csv("sp500.csv", sep=' ', comment='#',

index_col=0)

date = pd.to_datetime(sp['Date'])
sp500 = sp['Close'].values

plt.
plt.
plt.
plt.
plt.
plt.

figure(figsize=(10, 4))
semilogy(date, sp500)
xlabel('date')
ylabel('S&P 500')
tight_layout ()

show ()

12

S&P 500 plot

104

103 4

S&P 500

101 4

1940 1960 1980 2000 2020
date

Fitting a random walk model

To train our intuition, we compare the data with simulations from a fitted model. A simple
starting point is a Gaussian random walk with drift, having parameters estimated from the
data.

mu = np.mean(np.diff (np.log(sp500)))
sigma = np.std(np.diff (np.log(sp500)))
N = len(sp500)
X1 = np.log(sp500[0]) + np.cumsum(
np.r_[0, np.random.normal (mu, sigma, N-1)])
X2 = np.log(sp500[0]) + np.cumsum(
np.r_[0, np.random.normal (mu, sigma, N-1)])

13

Random walk simulations

10
10
9 .
9 .
8 .
8 o
— 7 4 (o]
5 5 71
© ©
—_ 6 - —_
3 > -
E E°
" [%)]
54 54
4 4-
31 37
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

S&P 500 returns ACF

o This seems reasonable so far. Now we plot the sample autocorrelation function (sample
ACF) of the log returns.

o It is bad style to refer to quantities using computer code notation. We should set up
mathematical notation in the text. Let’s try again...

o Let y;.,y be the time series of S&P 500 daily closing values downloaded from yahoo.com.
Let z, = Alogy,, =logy, —logy,,_;.

o We plot the sample autocorrelation function of the time series of S&P 500 returns, 2o, 5.

z = np.diff (np.log(sp500))

fig, ax = plt.subplots(figsize=(10, 4))
plot_acf(z, ax=ax, lags=40)
plt.tight_layout ()

plt.show()

14

Returns ACF plot

Autocorrelation

0.75 A

0.50 A

0.25 A

—0.25 4

—0.50 -

—0.75 1

-1.00

Interpretation
o This looks close to the ACF of white noise. There is some evidence for a small nonzero
autocorrelation at some lags.

e Here, we have a long time series. For such a long time series, statistically significant
effects may be practically insignificant.

Question. Why may the length of the time series be relevant when considering practical
versus statistical significance?

o It seems like the S&P 500 returns (centered, by subtracting the sample mean) may be a
real-life time series well modeled by white noise.

Absolute returns

o Looking at the absolute value of the centered returns is thought-provoking.

Question. How should we interpret the following plot? To what extent does this plot refute
the white noise model for the centered returns (or, equivalently, the random walk model for
the log index value)?

fig, ax = plt.subplots(figsize=(10, 4))
plot_acf(np.abs(z - np.mean(z)), ax=ax, lags=200)
plt.tight_layout ()

plt.show()

15

Absolute returns ACF

Autocorrelation

1.00

0.75 4

0.50 A

0.25 A

—0.25 1

—0.50 -

—0.75 1

-1.00 T T T T T T T T T
0 25 50 75 100 125 150 175 200

Volatility and market inefficiencies
¢ Nowadays, nobody is surprised that the sample ACF of a financial return time series
shows little or no evidence for autocorrelation.
o Deviations from the efficient market hypothesis, if you can find them, are of interest.

e Also, it remains a challenge to find good models for volatility, the conditional variance
process of a financial return model.

Further reading

o Chapter 1 of Shumway and Stoffer [1] provides a complementary introduction to time
series analysis.

o If you are relatively new to Python, there are many comprehensive introductions available
online.

Acknowledgments

e Compiled on January 16, 2026 using Python.

¢ Licensed under the Creative Commons Attribution-NonCommercial license. Please share
and remix non-commercially, mentioning its origin.

e We acknowledge previous versions of this course.

16

http://creativecommons.org/licenses/by-nc/4.0/
https://ionides.github.io/531w25/acknowledge.html

References

[1] Robert H Shumway and David S Stoffer. Time Series Analysis and its Applications: With
R Ezxamples. 4th. Springer, 2017.

17

	Concepts of stationarity
	Assessing stationarity
	Prevalence of stationarity
	White noise
	Example: Gaussian white noise
	Example: Binary white noise
	Example: Sinusoidal white noise
	Building time series models using white noise
	The AR(p) autoregressive model
	Initialization of AR models
	AR(1) example
	Simulating an autoregressive model
	AR(1) simulation plot
	Interpreting simulations
	Direct simulation of AR(1)
	Direct simulation plot
	The MA(q) moving average model
	Simulating a moving average model
	MA simulation plots
	Comparing simulations
	White noise visualization
	Modeling financial markets as a random walk
	S&P 500 plot
	Fitting a random walk model
	Random walk simulations
	S&P 500 returns ACF
	Returns ACF plot
	Interpretation
	Absolute returns
	Absolute returns ACF
	Volatility and market inefficiencies
	Further reading
	Acknowledgments

