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Concepts of stationarity
Definition: A time series model which is both mean stationary
and covariance stationary is weakly stationary or second order
stationary. A time series model for which all joint distributions are
invariant to shifts in time is strongly stationary or strictly
stationary.

▶ Formally, this means that for any collection of times
(𝑡1, 𝑡2, … , 𝑡𝐾), the joint distribution of observations at these
times should be the same as the joint distribution at
(𝑡1 + 𝜏, 𝑡2 + 𝜏, … , 𝑡𝐾 + 𝜏) for any 𝜏 .

▶ For equally spaced observations, this becomes: for any
collection of timepoints 𝑛1, … , 𝑛𝐾, and for any lag ℎ, the
joint density function of (𝑌𝑛1

, 𝑌𝑛2
, … , 𝑌𝑛𝐾

) is the same as
the joint density function of (𝑌𝑛1+ℎ, 𝑌𝑛2+ℎ, … , 𝑌𝑛𝐾+ℎ).
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▶ In our general notation for densities, this strict stationarity
requirement can be written as

𝑓𝑌𝑛1 ,𝑌𝑛2 ,…,𝑌𝑛𝐾
(𝑦1, 𝑦2, … , 𝑦𝐾)

= 𝑓𝑌𝑛1+ℎ,𝑌𝑛2+ℎ,…,𝑌𝑛𝐾+ℎ
(𝑦1, 𝑦2, … , 𝑦𝐾). (1)

▶ Strict stationarity implies weak stationarity (check this).
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Assessing stationarity
Question. How could we assess whether a weak stationary model
is appropriate for a time series dataset?

Question. How could we assess whether a strictly stationary
model is appropriate for a time series dataset?
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Prevalence of stationarity
Question. Is it usual for time series to be well modeled as
stationary (either weakly or strictly)?

Question. If data often do not show stationary behavior, why do
many fundamental models have stationarity?
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Question. Is a stationary model appropriate for either (or both)
the time series below? Explain.
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White noise
Definition: A time series model 𝜖1∶𝑁 which is weakly stationary
with

E[𝜖𝑛] = 0

Cov(𝜖𝑚, 𝜖𝑛) = { 𝜎2, if 𝑚 = 𝑛
0, if 𝑚 ≠ 𝑛 ,

is said to be white noise with variance 𝜎2.
▶ “Noise” is because there’s no pattern, just random variation.

If you listened to a realization of white noise as an audio file,
you would hear a static sound.

▶ “White” is because all frequencies are equally represented.
This will become clear when we do frequency domain analysis
of time series.

▶ Signal processing—sending and receiving signals on noisy
channels—was a motivation for early time series analysis.
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Example: Gaussian white noise
In time series analysis, a sequence of independent identically
distributed (iid) Normal random variables with mean zero and
variance 𝜎2 is known as Gaussian white noise. We write this
model as

𝜖1∶𝑁 ∼ iid 𝑁[0, 𝜎2].
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Example: Binary white noise
Let 𝜖1∶𝑁 be iid with

𝜖𝑛 = { 1, with probability 1/2
−1, with probability 1/2 .

We can check that E[𝜖𝑛] = 0, Var(𝜖𝑛) = 1 and Cov(𝜖𝑚, 𝜖𝑛) = 0
for 𝑚 ≠ 𝑛. Therefore, 𝜖1∶𝑁 is white noise.

Similarly, for any 𝑝 ∈ (0, 1), we could have

𝜖𝑛 = { (1 − 𝑝)/𝑝, with probability 𝑝
−1, with probability 1 − 𝑝 .
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Example: Sinusoidal white noise
Let 𝜖𝑛 = sin(2𝜋𝑛𝑈), with a single draw 𝑈 ∼ Uniform[0, 1]
determining the time series model for all 𝑛 ∈ 1 ∶ 𝑁 . We will show
this is an example of a weakly stationary time series that is not
strictly stationary.

Question. Show that 𝜖1∶𝑁 is weakly stationary, and is white noise!
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Question. Show that 𝜖1∶𝑁 is NOT strictly stationary.

Hint: consider the following plot of 𝜖1∶3 as a function of 𝑈 .
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Building time series models using white noise
Reminder: Why do we need time series models?

▶ All statistical tests (i.e., whenever we use data to answer a
question) rely on having a model for the data. The model is
sometimes called the assumptions for the test.

▶ If our model is wrong, then any conclusions drawn from it
may be wrong. Our error could be small and insignificant, or
disastrous.

▶ Time series data collected close in time are often more similar
than a model with iid variation would predict. We need
models that have this property, and we must work out how to
test interesting hypotheses for these models.
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The AR(p) autoregressive model
▶ The order 𝑝 autoregressive model, abbreviated to AR(p), is

[M1] 𝑌𝑛 = 𝜙1𝑌𝑛−1 + 𝜙2𝑌𝑛−2 + ⋯ + 𝜙𝑝𝑌𝑛−𝑝 + 𝜖𝑛,

where {𝜖𝑛} is a white noise process.
▶ Often, we consider the Gaussian AR(p) model, where {𝜖𝑛} is

a Gaussian white noise process.
▶ M1 is a stochastic difference equation. It is a difference

equation (also known as a recurrence relation) since each time
point is specified recursively in terms of previous time points.
Stochastic just means random.

▶ M1 is centered, with mean zero. We can add a mean
parameter.
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Initialization of AR models
▶ To complete the model, we need to initialize the solution to

the stochastic difference equation. Supposing we want to
specify a distribution for 𝑌1∶𝑁 , we have some choices in how
to set up the initial values.

1. We can specify 𝑌1∶𝑝 explicitly, to get the recursion started.
2. We can specify 𝑌1−𝑝∶0 explicitly.
3. For either of these choices, we can define these initial values

either to be additional parameters in the model (i.e., not
random) or to be specified random variables.

4. If we want our model is strictly stationary, we must initialize
so that 𝑌1∶𝑝 have the proper joint distribution for this
stationary model.
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AR(1) example
▶ Assuming the initialization has mean zero, M1 implies that

E[𝑌𝑛] = 0 for all 𝑛. For additional generality, we could add a
constant mean 𝜇.

▶ Let’s investigate a particular Gaussian AR(1) process, as an
exercise:
[M2] 𝑌𝑛 = 0.6𝑌𝑛−1 + 𝜖𝑛,
where 𝜖𝑛 ∼ iid 𝑁[0, 1]. We will initialize with
𝑌1 ∼ 𝑁[0, 1.56].
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Simulating an autoregressive model
Looking at simulated sample paths is a good way to get intuition
about a random process model. First, we do this for the AR(1)
model M2 using the ARIMA simulation functionality in
statsmodels.
np.random.seed(11235)
# Simulate AR(1) with phi=0.6
arparams = np.array([0.6])
ar = np.r_[1, -arparams]
ma = np.array([1])
ar1_process = ArmaProcess(ar, ma)
ar1 = ar1_process.generate_sample(nsample=100,

scale=1.0)
plt.figure(figsize=(10, 4))
plt.plot(ar1); plt.ylabel('ar1')
plt.tight_layout(); plt.show()
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AR(1) simulation plot
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Interpreting simulations
▶ Does your intuition tell you that these simulated data are

evidence for a model with a linear trend?
▶ The eye looks for patterns in data, and often finds them even

when there is no strong statistical evidence. It is easy to see
patterns even in white noise. Dependent models produce
spurious patterns even more often.

▶ That is why we need statistical tests!
▶ Fitting the usual OLS regression model results in a highly

statistically significant trend estimate. We need methods that
allow for dependence.

▶ Play with simulating different models with different seeds to
train your intuition.
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Direct simulation of AR(1)
We can also simulate model M2 directly by writing the model
equation:
np.random.seed(11235)
N = 100
X = np.zeros(N)
X[0] = np.random.normal(0, np.sqrt(1.56))
for n in range(1, N):

X[n] = 0.6 * X[n-1] + np.random.normal(0, 1)
plt.figure(figsize=(10, 4))
plt.plot(X)
plt.ylabel('X')
plt.tight_layout()
plt.show()
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Direct simulation plot

In this case, generate_sample exactly matches the direct
approach.

20 / 43



Question. What are the advantages and disadvantages of using
library simulation functions over the direct simulation method?
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Question. Compute the autocovariance function for model M2.
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The MA(q) moving average model
▶ The order 𝑞 moving average model, abbreviated to MA(q), is

[M3] 𝑌𝑛 = 𝜖𝑛 + 𝜃1𝜖𝑛−1 + ⋯ + 𝜃𝑞𝜖𝑛−𝑞,
where {𝜖𝑛} is a white noise process.

▶ To fully specify 𝑌1∶𝑁 we must specify the joint distribution of
𝜖1−𝑞∶𝑁 .

▶ Often, we consider the Gaussian MA(q) model, where {𝜖𝑛}
is a Gaussian white noise process.

▶ In M3, we’ve defined a zero mean process. We could add a
mean 𝜇.

▶ Let’s investigate a particular Gaussian MA(2) process, as an
exercise.
[M4] 𝑌𝑛 = 𝜖𝑛 + 1.5𝜖𝑛−1 + 𝜖𝑛−2,
where 𝜖𝑛 ∼ iid 𝑁[0, 1].
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Simulating a moving average model
We can simulate M4 using statsmodels or directly.
N = 100
np.random.seed(11235)
# Using statsmodels
maparams = np.array([1.5, 1])
ar = np.array([1])
ma = np.r_[1, maparams]
ma_process = ArmaProcess(ar, ma)
X1 = ma_process.generate_sample(nsample=N, scale=1.0)

# Direct simulation
np.random.seed(11235)
epsilon = np.random.randn(N+2)
X2 = np.zeros(N)
for n in range(N):

X2[n] = epsilon[n+2]+1.5*epsilon[n+1]+epsilon[n]
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MA simulation plots
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Comparing simulations
▶ The two methods look similar, with a lag shift. We can check

this is true:
test_equal=np.allclose(X1[-(N-2):],X2[:N-2])
print(f"X1 and X2 close: {test_equal}")

X1 and X2 close: True

▶ Is the spurious evidence for a trend that we saw for the AR(1)
model still present for the MA(2) simulation? Let’s see if we
can also see it in the underlying white noise process:
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White noise visualization
N = 100
np.random.seed(11235)
epsilon = np.random.randn(N)
plt.figure(figsize=(10, 4))
plt.plot(epsilon); plt.ylabel('epsilon')
plt.tight_layout(); plt.show()
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Definition:. The random walk model is
[M5] 𝑌𝑛 = 𝑌𝑛−1 + 𝜖𝑛,
where {𝜖𝑛} is white noise. Unless otherwise specified, we usually
initialize with 𝑌0 = 0.

If {𝜖𝑛} is Gaussian white noise, we have a Gaussian random walk.

The random walk model is a special case of AR(1) with 𝜙1 = 1.

The stochastic difference equation in M5 has an exact solution,

𝑌𝑛 =
𝑛

∑
𝑘=1

𝜖𝑘.

We can also call 𝑌0∶𝑁 an integrated white noise process. We
think of summation as a discrete version of integration.

If data 𝑦1∶𝑁 are modeled as a random walk, the value of 𝑌0 is
usually an unknown. We can treat this as an unknown parameter,
or initialize our model at time 𝑡1 with 𝑌1 = 𝑦∗

1.
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Definition: The first difference time series 𝑧2∶𝑁 is defined by

𝑧𝑛 = Δ𝑦𝑛 = 𝑦𝑛 − 𝑦𝑛−1 (2)

▶ From a time series of length 𝑁 , we only get 𝑁 − 1 first
differences.

▶ A random walk model for 𝑦1∶𝑁 is essentially equivalent to a
white noise model for 𝑧2∶𝑁 = Δ𝑦2∶𝑁 , apart from the issue of
initialization.
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Definition: The random walk with drift model is given by the
difference equation

[M6] 𝑌𝑛 = 𝑌𝑛−1 + 𝜇 + 𝜖𝑛,

driven by a white noise process {𝜖𝑛}. This has solution

𝑌𝑛 = 𝑌0 + 𝑛𝜇 +
𝑛

∑
𝑘=1

𝜖𝑘.

▶ Here, 𝜇 is the mean of the increments rather than the
random walk process itself.

▶ As for the random walk without drift, we must define 𝑌0 to
initialize the model and complete the model specification.
Unless otherwise specified, we usually initialize with 𝑌0 = 0.
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Modeling financial markets as a random walk
The theory of efficient financial markets suggests that the
logarithm of a stock market index (or the value of an individual
stock, or other investment) might behave like a random walk with
drift. We test this on daily S&P 500 data.
sp = pd.read_csv("sp500.csv", sep=' ', comment='#',

index_col=0)
date = pd.to_datetime(sp['Date'])
sp500 = sp['Close'].values
plt.figure(figsize=(10, 4))
plt.semilogy(date, sp500)
plt.xlabel('date')
plt.ylabel('S&P 500')
plt.tight_layout()
plt.show()
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S&P 500 plot
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Fitting a random walk model
To train our intuition, we compare the data with simulations from
a fitted model. A simple starting point is a Gaussian random walk
with drift, having parameters estimated from the data.
mu = np.mean(np.diff(np.log(sp500)))
sigma = np.std(np.diff(np.log(sp500)))
N = len(sp500)
X1 = np.log(sp500[0]) + np.cumsum(

np.r_[0, np.random.normal(mu, sigma, N-1)])
X2 = np.log(sp500[0]) + np.cumsum(

np.r_[0, np.random.normal(mu, sigma, N-1)])
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Random walk simulations
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S&P 500 returns ACF
▶ This seems reasonable so far. Now we plot the sample

autocorrelation function (sample ACF) of the log returns.
▶ It is bad style to refer to quantities using computer code

notation. We should set up mathematical notation in the text.
Let’s try again…

▶ Let 𝑦1∶𝑁 be the time series of S&P 500 daily closing values
downloaded from yahoo.com. Let
𝑧𝑛 = Δ log 𝑦𝑛 = log 𝑦𝑛 − log 𝑦𝑛−1.

▶ We plot the sample autocorrelation function of the time series
of S&P 500 returns, 𝑧2∶𝑁 .

z = np.diff(np.log(sp500))
fig, ax = plt.subplots(figsize=(10, 4))
plot_acf(z, ax=ax, lags=40)
plt.tight_layout()
plt.show()
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Returns ACF plot
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Interpretation
▶ This looks close to the ACF of white noise. There is some

evidence for a small nonzero autocorrelation at some lags.
▶ Here, we have a long time series. For such a long time series,

statistically significant effects may be practically insignificant.

Question. Why may the length of the time series be relevant
when considering practical versus statistical significance?

▶ It seems like the S&P 500 returns (centered, by subtracting
the sample mean) may be a real-life time series well modeled
by white noise.
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Absolute returns
▶ Looking at the absolute value of the centered returns is

thought-provoking.

Question. How should we interpret the following plot? To what
extent does this plot refute the white noise model for the centered
returns (or, equivalently, the random walk model for the log index
value)?
fig, ax = plt.subplots(figsize=(10, 4))
plot_acf(np.abs(z - np.mean(z)), ax=ax, lags=200)
plt.tight_layout()
plt.show()
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Absolute returns ACF
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Volatility and market inefficiencies
▶ Nowadays, nobody is surprised that the sample ACF of a

financial return time series shows little or no evidence for
autocorrelation.

▶ Deviations from the efficient market hypothesis, if you can
find them, are of interest.

▶ Also, it remains a challenge to find good models for volatility,
the conditional variance process of a financial return model.
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Further reading
▶ Chapter 1 of Shumway and Stoffer [1] provides a

complementary introduction to time series analysis.
▶ If you are relatively new to Python, there are many

comprehensive introductions available online.
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