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Definition: A stationary causal linear process is a time series model that can be written
as

[M7] 𝑌𝑛 = 𝜇 + 𝑔0𝜖𝑛 + 𝑔1𝜖𝑛−1 + 𝑔2𝜖𝑛−2 + 𝑔3𝜖𝑛−3 + 𝑔4𝜖𝑛−4 + …
where {𝜖𝑛, 𝑛 = … , −2, −1, 0, 1, 2, … } is a white noise process, defined for all integer timepoints,
with variance Var(𝜖𝑛) = 𝜎2.

• We do not need to define any initial values. The doubly infinite noise process {𝜖𝑛, 𝑛 =
… , −2, −1, 0, 1, 2, … } is enough to define 𝑌𝑛 for every 𝑛 as long as the infinite sum in
[M7] converges.

Question. When does “stationary” here mean weak stationarity, and when does it mean
strict stationarity?

• causal in [M7] refers to {𝜖𝑛} being a causal driver of {𝑌𝑛}. The value of 𝑌𝑛 depends
only on noise process values already determined by time 𝑛.

• This matches a requirement that causes must precede effects (Bradford Hill criteria).

• linear refers to linearity of 𝑌𝑛 as a function of {𝜖𝑛}.
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The autocovariance function for a linear process

𝛾ℎ = Cov(𝑌𝑛, 𝑌𝑛+ℎ) (1)

= Cov (
∞

∑
𝑗=0

𝑔𝑗𝜖𝑛−𝑗,
∞

∑
𝑘=0

𝑔𝑘𝜖𝑛+ℎ−𝑘) (2)

=
∞

∑
𝑗=0

∞
∑
𝑘=0

𝑔𝑗𝑔𝑘Cov(𝜖𝑛−𝑗, 𝜖𝑛+ℎ−𝑘) (3)

=
∞

∑
𝑗=0

𝑔𝑗𝑔𝑗+ℎ𝜎2, for ℎ ≥ 0. (4)

• For the autocovariance function to be finite, we need
∞

∑
𝑗=0

𝑔2
𝑗 < ∞. (5)

• Note: we assumed we can move ∑∞
𝑗=0 ∑∞

𝑘=0 through Cov.

• The interchange of expectation and infinite sums cannot be taken for granted.
Cov (∑𝑚

𝑖=1 𝑋𝑖, ∑𝑛
𝑗=1 𝑌𝑗) = ∑𝑚

𝑖=1 ∑𝑛
𝑗=1 Cov(𝑋𝑖, 𝑌𝑗) is true for finite 𝑚 and 𝑛, but not

necessarily for infinite sums.

• In this course, we do not focus on interchange issues, but we try to notice when we make
assumptions.

• The interchange of ∑∞
0 and Cov can be justified by requiring a stronger condition,

∞
∑
𝑗=0

|𝑔𝑗| < ∞. (6)

• The MA(q) model that we defined in equation M3 is an example of a stationary, causal
linear process.

• The general stationary, causal linear process model, M7, can also be called the MA(∞)
model.
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Causal and non-causal AR(1) models

The stochastic difference equation defining the AR(1) model,

[M8] 𝑌𝑛 = 𝜙𝑌𝑛−1 + 𝜖𝑛,

has a causal solution,

[M8.1] 𝑌𝑛 = ∑∞
𝑗=0 𝜙𝑗𝜖𝑛−𝑗.

It also has a non-causal solution,

[M8.2] 𝑌𝑛 = − ∑∞
𝑗=1 𝜙−𝑗𝜖𝑛+𝑗.

Question. Work through the algebra to check that M8.1 and M8.2 both solve equation M8.

Question. For what values of 𝜙 is the causal solution M8.1 a convergent infinite sum, meaning
that it converges to a random variable with finite variance? For what values is the non-causal
solution M8.2 a convergent infinite sum?

Using the MA(∞) representation to compute the autocovariance of an ARMA
model

Question. The linear process representation can be a convenient way to calculate autocovari-
ance functions. Use the linear process representation in M8.1, together with our expression for
the autocovariance of the general linear process M7, to get an expression for the autocovariance
function of the AR(1) model.
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ARMA models written using the backshift operator

• The backshift operator 𝐵, also called the lag operator, is

𝐵𝑌𝑛 = 𝑌𝑛−1. (7)

• The difference operator Δ = 1 − 𝐵 is

Δ𝑌𝑛 = (1 − 𝐵)𝑌𝑛 = 𝑌𝑛 − 𝑌𝑛−1. (8)

• Powers of the backshift operator correspond to different time shifts, e.g.,

𝐵2𝑌𝑛 = 𝐵(𝐵𝑌𝑛) = 𝐵(𝑌𝑛−1) = 𝑌𝑛−2. (9)

• We can also take a second difference,

Δ2𝑌𝑛 = (1 − 𝐵)(1 − 𝐵)𝑌𝑛
= (1 − 2𝐵 + 𝐵2)𝑌𝑛 = 𝑌𝑛 − 2𝑌𝑛−1 + 𝑌𝑛−2. (10)

• The backshift operator is linear, i.e.,

𝐵(𝛼𝑋𝑛 + 𝛽𝑌𝑛) = 𝛼𝐵𝑋𝑛 + 𝛽𝐵𝑌𝑛 = 𝛼𝑋𝑛−1 + 𝛽𝑌𝑛−1 (11)

• Backshift operators and their powers can be added, multiplied by each other, and mul-
tiplied by a scalar.

• Mathematically, backshift operators follow the same rules as the algebra of polynomial
functions.

• For example, a distributive rule for 𝛼 + 𝛽𝐵 is

(𝛼 + 𝛽𝐵)𝑌𝑛 = (𝛼𝐵0 + 𝛽𝐵1)𝑌𝑛 = 𝛼𝑌𝑛 + 𝛽𝐵𝑌𝑛 = 𝛼𝑌𝑛 + 𝛽𝑌𝑛−1.

• Mathematical properties we know about polynomials can be used to work with backshift
operators.

• The AR, MA and linear process model equations can all be written in terms of polyno-
mials in the backshift operator.
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• Write 𝜙(𝑥) = 1 − 𝜙1𝑥 − 𝜙2𝑥2 − ⋯ − 𝜙𝑝𝑥𝑝, an order 𝑝 polynomial. The equation M1 for
the AR(p) model becomes

𝑌𝑛 − 𝜙1𝑌𝑛−1 − 𝜙2𝑌𝑛−2 − ⋯ − 𝜙𝑝𝑌𝑛−𝑝 = 𝜖𝑛, (12)

which can be written using the backshift operator as

[M1′] 𝜙(𝐵)𝑌𝑛 = 𝜖𝑛.

• Write 𝜃(𝑥) for a polynomial of order 𝑞,

𝜃(𝑥) = 1 + 𝜃1𝑥 + 𝜃2𝑥2 + ⋯ + 𝜃𝑞𝑥𝑞. (13)

• The MA(q) equation M3 is equivalent to

[M3′] 𝑌𝑛 = 𝜃(𝐵)𝜖𝑛.

• If 𝑔(𝑥) is a function defined by the Taylor series

𝑔(𝑥) = 𝑔0 + 𝑔1𝑥 + 𝑔2𝑥2 + 𝑔3𝑥3 + 𝑔4𝑥4 + … , (14)

the stationary causal linear process equation [M7] is

[M7′] 𝑌𝑛 = 𝜇 + 𝑔(𝐵)𝜖𝑛.

• Whatever you know or learn about working with Taylor series expansions helps you
understand AR, MA and ARMA models.

The general ARMA model

Putting together M1 and M3 suggests an autoregressive moving average ARMA(p,q)
model given by

[M9] 𝑌𝑛 = 𝜙1𝑌𝑛−1 + 𝜙2𝑌𝑛−2 + ⋯ + 𝜙𝑝𝑌𝑛−𝑝+
𝜖𝑛 + 𝜃1𝜖𝑛−1 + ⋯ + 𝜃𝑞𝜖𝑛−𝑞,

where {𝜖𝑛} is a white noise process. Using the backshift operator, we can write this more
succinctly as

[M9′] 𝜙(𝐵)𝑌𝑛 = 𝜃(𝐵)𝜖𝑛.
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• Experience with data analysis suggests that models with both AR and MA components
often fit data better than a pure AR or MA process.

• The general stationary ARMA(p,q) also has a mean 𝜇,

[M9″] 𝜙(𝐵)(𝑌𝑛 − 𝜇) = 𝜃(𝐵)𝜖𝑛.

Obtaining the MA(∞) representation and autocovariance of the ARMA(1,1)
model

Consider 𝑌𝑛 = 𝜙𝑌𝑛−1 + 𝜖𝑛 + 𝜃𝜖𝑛−1.

Step 1. Put the model in the form 𝑌𝑛 = 𝑔(𝐵)𝜖𝑛.

Formally, we can write
(1 − 𝜙𝐵)𝑌𝑛 = (1 + 𝜃𝐵)𝜖𝑛, (15)

which algebraically is equivalent to

𝑌𝑛 = ( 1 + 𝜃𝐵
1 − 𝜙𝐵) 𝜖𝑛. (16)

We can write this as
𝑌𝑛 = 𝑔(𝐵)𝜖𝑛, (17)

where
𝑔(𝑥) = ( 1 + 𝜃𝑥

1 − 𝜙𝑥) . (18)

Step 2. Work out the Taylor series expansion,

𝑔(𝑥) = 𝑔0 + 𝑔1𝑥 + 𝑔2𝑥2 + 𝑔3𝑥3 + … (19)

You can do this either by hand or using your favorite math software.

Step 3. Obtain the MA(∞) representation, by putting the Taylor series into the form
𝑌𝑛 = 𝑔(𝐵)𝜖𝑛.

Step 4. Obtain the autocovariance function, by using the general formula for an MA(∞)
process.

Carrying out this calculation is an exercise.
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Causal, invertible ARMA models

• We say that the ARMA model [M9] is causal if its MA(∞) representation is a convergent
series.

• Recall that causality is about writing 𝑌𝑛 in terms of the driving noise process
{𝜖𝑛, 𝜖𝑛−1, 𝜖𝑛−2, … }.

• Invertibility is about writing 𝜖𝑛 in terms of 𝑌𝑛, 𝑌𝑛−1, ….

• To assess causality, we consider the convergence of the Taylor series expansion of
𝜃(𝑥)/𝜙(𝑥) in the ARMA representation

𝑌𝑛 = 𝜃(𝐵)
𝜙(𝐵)𝜖𝑛.

• To assess invertibility, we consider the convergence of the Taylor series expansion of
𝜙(𝑥)/𝜃(𝑥) in the inversion of the ARMA model given by

𝜖𝑛 = 𝜙(𝐵)
𝜃(𝐵) 𝑌𝑛.

• Fortunately, there is a simple way to check causality and invertibility without calculating
the Taylor series.

• The ARMA model is causal if the AR polynomial,

𝜙(𝑥) = 1 − 𝜙1𝑥 − 𝜙2𝑥2 − ⋯ − 𝜙𝑝𝑥𝑝

has all its roots (i.e., solutions to 𝜙(𝑥) = 0) outside the unit circle in the complex plane.

• The ARMA model is invertible if the MA polynomial,

𝜃(𝑥) = 1 + 𝜃1𝑥 + 𝜃2𝑥2 + ⋯ + 𝜃𝑞𝑥𝑞

has all its roots outside the unit circle.

Question. It is undesirable to use a non-invertible model for data analysis. Why?
Hint: One answer to this question involves diagnosing model misspecification.

We can check the roots using NumPy’s roots function. For example, consider the MA(2)
model, 𝑌𝑛 = 𝜖𝑛 + 2𝜖𝑛−1 + 2𝜖𝑛−2. The roots to 𝜃(𝑥) = 1 + 2𝑥 + 2𝑥2 are
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roots = np.roots([2, 2, 1])
print(roots)

[-0.5+0.5j -0.5-0.5j]

• Finding the absolute value shows that we have two roots inside the unit circle, so this
MA(2) model is not invertible.

print(np.abs(roots))

[0.70710678 0.70710678]

• In this case, you should be able to find the roots algebraically. In general, numerical
evaluation of roots is useful.

Reducible and irreducible ARMA models

• Write the ARMA model written as a ratio of two polynomials,

𝑌𝑛 = 𝜃(𝐵)
𝜙(𝐵)𝜖𝑛. (20)

If the two polynomials 𝜙(𝑥) and 𝜃(𝑥) share a common factor, it can be canceled out
without changing the model.

• The fundamental theorem of algebra says that every polynomial 𝜙(𝑥) = 1 − 𝜙1𝑥 −
⋯ − 𝜙𝑝𝑥𝑝 of degree 𝑝 can be written in the form

(1 − 𝑥/𝜆1) × (1 − 𝑥/𝜆2) × ⋯ × (1 − 𝑥/𝜆𝑝), (21)

where 𝜆1∶𝑝 are the 𝑝 roots of the polynomial, which may be real or complex valued.

• The Taylor series expansion of 𝜙(𝐵)−1 is convergent if and only if (1 − 𝐵/𝜆𝑖)−1 has a
convergent expansion for each 𝑖 ∈ 1 ∶ 𝑝. This happens if |𝜆𝑖| > 1 for each 𝑖.

• The polynomials 𝜙(𝑥) and 𝜃(𝑥) share a common factor if, and only if, they share a
common root.
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• It is not clear, just from looking at the model equations, that

𝑌𝑛 = 5
6𝑌𝑛−1 − 1

6𝑌𝑛−2 + 𝜖𝑛 − 𝜖𝑛−1 + 1
4𝜖𝑛−2 (22)

is exactly the same model as

𝑌𝑛 = 1
3𝑌𝑛−1 + 𝜖𝑛 − 1

2𝜖𝑛−1. (23)

• To see this, you have to do the math! We see that the second of these equations is
derived from the first by canceling out the common factor (1 − 0.5𝐵) in the ARMA
model specification.

ar_roots = np.roots([1/6, -5/6, 1])
ma_roots = np.roots([1/4, -1, 1])
print(f"AR roots: {ar_roots}, MA roots: {ma_roots}")

AR roots: [3. 2.], MA roots: [2.00000001 1.99999999]

AR(2) models and oscillating behavior

• Non-random physical processes evolving through time have been modeled using differen-
tial equations ever since the ground-breaking work by Newton [1].

• The data and systems we want to study have considerable randomness (unpredictability).

• However, it is helpful to study related deterministic systems.

• The deterministic skeleton of a time series model is the non-random process obtained
by removing randomness from a stochastic model.

• For a discrete-time model, we can define a continuous-time deterministic skeleton by
replacing the discrete-time difference equation with a differential equation.

• Rather than deriving a deterministic skeleton from a stochastic time series model, we
can instead add stochasticity to a deterministic model.
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Oscillatory behavior modeled using an AR(2) process

• In physics, a basic model for processes that oscillate (springs, pendulums, vibrating
machine parts, etc) is simple harmonic motion.

• The differential equation for a simple harmonic motion process 𝑥(𝑡) is

[M10] 𝑑2

𝑑𝑡2 𝑥(𝑡) = −𝜔2𝑥(𝑡).

• This is a second order linear differential equation with constant coefficients. Such equa-
tions have a closed form solution. You may already know that the solution to M10 is
sinusoidal.

• Finding the solution to a linear differential equation is very similar to the task of solving
difference equations which is useful elsewhere in time series analysis. It also gives a
chance to review complex numbers. Let’s see how it is done.

1. Look for solutions of the form 𝑥(𝑡) = 𝑒𝜆𝑡. Substituting this into the differential equation
[M10] we get

𝜆2𝑒𝜆𝑡 = −𝜔2𝑒𝜆𝑡. (24)

2. Canceling the term 𝑒𝜆𝑡, we see that this has two solutions, with

𝜆 = ±𝜔𝑖, where 𝑖 =
√

−1. (25)

3. The linearity of the differential equation means that if 𝑦1(𝑡) and 𝑦2(𝑡) are two solutions,
then 𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡) is also a solution for any 𝑎 and 𝑏. So, the general solution to M10
is

𝑥(𝑡) = 𝑎𝑒𝑖𝜔𝑡 + 𝑏𝑒−𝑖𝜔𝑡. (26)
Here, 𝑎 and 𝑏 could be complex numbers.

4. We may suspect that 𝑥(𝑡) = 𝑎𝑒𝑖𝜔𝑡 + 𝑏𝑒−𝑖𝜔𝑡 is sinusoidal by recalling the identities

sin(𝜔𝑡) = 1
2𝑖(𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡), cos(𝜔𝑡) = 1

2(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡). (27)

5. For physical systems, 𝑥(𝑡) is real so we know that the complex part must be zero. Thus,
the two terms on the right are complex conjugates. Writing 𝑎 = (𝐴/2)𝑒𝑖𝜙, this implies
𝑏 = (𝐴/2)𝑒−𝑖𝜙 for real 𝐴 and 𝜙. The factor of 1/2 is arbitrary. This gives

𝑥(𝑡) = 𝐴
2 (𝑒𝑖(𝜔𝑡+𝜙) + 𝑒−𝑖(𝜔𝑡+𝜙)) . (28)

10



6. Putting together these identities we get

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙), (29)

which explains why the factor of 1/2 is convenient.

Frequency, amplitude and phase for 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙)

• 𝜔 is called the frequency, and 𝜙 is called the phase.
• Angle is usually measured in radians, so the units of 𝜔 are radians per unit time, and

units of 𝜙 are radians.
• The period is 2𝜋/𝜔, the time for one cycle.
• 𝐴 is called the amplitude.
• The frequency of the oscillation is determined by 𝜔 in M10, but the amplitude and phase

are unspecified constants which may be determined by initial conditions.
• It may be convenient to rescale to cycles per unit time,

𝑥(𝑡) = 𝐴 cos(2𝜋(𝜔′𝑡 + 𝜙′)) (30)

where 𝜔′ = 𝜔/2𝜋, 𝜙′ = 𝜙/2𝜋.

• A discrete time version of M10 is a deterministic linear difference equation, replacing 𝑑2
𝑑𝑡2

by the second difference operator, Δ2 = (1 − 𝐵)2. This corresponds to a deterministic
model equation,

Δ2𝑦𝑛 = −𝜔2𝑦𝑛.

• Adding white noise, and expanding out Δ2 = (1 − 𝐵)2, we get a stochastic model,

[M11] 𝑌𝑛 = 2𝑌𝑛−1
1 + 𝜔2 − 𝑌𝑛−2

1 + 𝜔2 + 𝜖𝑛.

• Model M11 may be appropriate to describe systems that have semi-regular but some-
what erratic fluctuations, called quasi-periodic behavior. Such behavior is evident in
business cycles or wild animal populations.

We look at a simulation from M11 with 𝜔 = 0.1 and 𝜖𝑛 ∼ iid 𝑁[0, 1]. From our exact solution
to the deterministic skeleton, we expect that a typical period of the oscillations should be
2𝜋/𝜔 ≈ 60.
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omega = 0.1
ar_coefs = [2/(1+omega**2), -1/(1+omega**2)]
# Using ArmaProcess for simulation
ar_poly = np.r_[1, -np.array(ar_coefs)]
ma_poly = np.array([1])
ar_process = ArmaProcess(ar_poly, ma_poly)
X = ar_process.generate_sample(nsample=500,scale=1.0)

fig,(ax1,ax2) = plt.subplots(1,2,figsize=(12,3.5))
ax1.plot(X); ax1.set_ylabel('X')
# Compute theoretical ACF
acf_vals = ar_process.acf(lags=500)
ax2.plot(acf_vals); ax2.set_ylabel('ACF of X')
ax2.set_xlabel('Lag')
plt.tight_layout(); plt.show()

Quasi-periodic AR(2) simulation

• Quasi-periodic fluctuations are phase locked when the random perturbations are not
able to knock the oscillations away from being close to their initial phase.

• Eventually, the randomness should mean that the process is equally likely to have any
phase, regardless of the initial phase.

Question. What is the timescale on which the simulated model shows phase locked behavior?
Equivalently, on what timescale does the phase of the fluctuations lose memory of its initial
phase?
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Further reading

• Section 2.2 of Shumway and Stoffer [2] introduces the backshift operator.

• Section 3.1 develops the theory of ARMA models in a similar way to this chapter.

• Section 3.2 gives a difference equation approach to calculating ARMA autocovariance
functions which gives an opportunity to practice algebra similar to our study of the
AR(2) model.
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