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Definition: A stationary causal linear process is a time series
model that can be written as

M7] Y, = i+ go€, + 91601 + G2y + 9363+ Ga€pg + .
where {¢,,,n =...,—2,—1,0,1,2,... } is a white noise process,

defined for all integer timepoints, with variance Var(e,,) = o2

P We do not need to define any initial values. The doubly
infinite noise process {¢,,,n = ...,—2,—1,0,1,2,... } is
enough to define Y,, for every n as long as the infinite sum in
[M7] converges.

Question. When does “stationary” here mean weak stationarity,
and when does it mean strict stationarity?
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P causal in [M7] refers to {e,,} being a causal driver of {Y, }.
The value of Y,, depends only on noise process values already
determined by time n.

P> This matches a requirement that causes must precede effects
(Bradford Hill criteria).

P linear refers to linearity of Y,, as a function of {¢, }.
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https://wikipedia.org/wiki/Bradford_Hill_criteria

The autocovariance function for a linear process

T = COV<Yn7 Yn+h> (1)
= Cov (Z gjenj7zgk6n+hk> (2)
=0 k=0
= gjgkCOV(Gn_j, €n+h_k) (3)
§=0 k=0
= > ;9,402 for h > 0. (4)
=0

P For the autocovariance function to be finite, we need
0
2
D g7 <o (5)
=0

oo oo
P Note: we assumed we can move ijo > 1_p through Cov. .



P> The interchange of expectation and infinite sums cannot be
taken for granted.

Cov (X0, X, X0, Y;) = 20 07| Cov(X,,Y)) s true
for finite m and n, but not necessarily for infinite sums.

P> In this course, we do not focus on interchange issues, but we
try to notice when we make assumptions.

P The interchange of Zgo and Cov can be justified by requiring
a stronger condition,

Z ‘9j| < 0. (6)
7=0

P The MA(q) model that we defined in equation M3 is an
example of a stationary, causal linear process.

P> The general stationary, causal linear process model, M7, can
also be called the MA(oc0) model.
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Causal and non-causal AR(1) models

The stochastic difference equation defining the AR(1) model,
[M8] Y, =0¢Y, ;| +e,,

has a causal solution,

[M8.1] Y, = 2;’20 e, ;.

It also has a non-causal solution,

M8.2] Y, =—3" 6 e,

Question. Work through the algebra to check that M8.1 and
M8.2 both solve equation M8.
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Question. For what values of ¢ is the causal solution M8.1 a
convergent infinite sum, meaning that it converges to a random
variable with finite variance? For what values is the non-causal
solution M8.2 a convergent infinite sum?
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Using the MA(00) representation to compute the
autocovariance of an ARMA model

Question. The linear process representation can be a convenient
way to calculate autocovariance functions. Use the linear process
representation in M8.1, together with our expression for the
autocovariance of the general linear process M7, to get an
expression for the autocovariance function of the AR(1) model.
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ARMA models written using the backshift operator

P> The backshift operator B, also called the lag operator, is
BY, =Y, ;. (7)

P The difference operator A =1— Bis

AY,=(1-B)Y, =Y, —-Y ;. (8)
P> Powers of the backshift operator correspond to different time
shifts, e.g.,
B2Yn = B(‘BYn) = B(Yn—l) = Yn—Q' (9)

P We can also take a second difference,

A%y, = (1-B)(1-B)Y,

(1-2B+B»Y, =Y, —2Y, ,+Y, ,. (10)
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The backshift operator is linear, i.e.,

B(aXn + BYn) = aBXn + 5BYn = aanl + 5Yn71 (11)

Backshift operators and their powers can be added, multiplied
by each other, and multiplied by a scalar.

Mathematically, backshift operators follow the same rules as
the algebra of polynomial functions.

For example, a distributive rule for o + 8B is

<a+BB)Yn = (aBO—f_BBl)Yn = aYn+5BYn = aYn—’—ﬁYnfl'

Mathematical properties we know about polynomials can be
used to work with backshift operators.

The AR, MA and linear process model equations can all be
written in terms of polynomials in the backshift operator.
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P Write ¢(z) = 1 — ¢& — ¢ppa® — - — ¢, P, an order p
polynomial. The equation M1 for the AR(p) model becomes

Y, =Y, 10— Y, o —— ¢pYn—p = €n (12)
which can be written using the backshift operator as
[M17] o»(B)Y, =¢,.
P Write 6(z) for a polynomial of order ¢,

0(x) =1+ 0,2+ 02 + - + 0,29 (13)

P The MA(q) equation M3 is equivalent to
[M3'] Y, = 0(B)e,,.
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P If g(z) is a function defined by the Taylor series
9(x) = go + 917 + go2® + g32° + gyt + ..., (14)
the stationary causal linear process equation [M7] is
[M7'] Y, = p+g(B)e,.

P Whatever you know or learn about working with Taylor series
expansions helps you understand AR, MA and ARMA models.
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https://wikipedia.org/wiki/Taylor_series

The general ARMA model

Putting together M1 and M3 suggests an autoregressive moving
average ARMA(p,q) model given by

[M9] Yn = ¢1Yn71 + ¢2Yn72 +oeet qbpYnfp_’_
€, + alenfl + -+ eqen,q,

where {¢, } is a white noise process. Using the backshift operator,
we can write this more succinctly as

[M9] »(B)Y,, = 0(B)e,,.

P> Experience with data analysis suggests that models with both
AR and MA components often fit data better than a pure AR
or MA process.

P The general stationary ARMA(p,q) also has a mean g,

[MO"] &(B)(Y, — p) = O(B)e,.
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Obtaining the MA(o0) representation and autocovariance
of the ARMA(1,1) model

Consider Y,, = @Y, | +€, +0¢, ;.
Step 1. Put the model in the form Y, = g(B)e,,.

Formally, we can write

(1—¢B)Y,, = (1+6B)e,, (15)
which algebraically is equivalent to
1+6B
Y = . 1
= (2p) (16)
We can write this as
Y, = g<B)€n’ (17)
where 40
x
= 18
o) = (1= (18)
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Step 2. Work out the Taylor series expansion,
9(x) = go + g1& + goa® + g3z + ... (19)

You can do this either by hand or using your favorite math
software.

Step 3. Obtain the MA(o0) representation, by putting the
Taylor series into the form Y, = g(B)e

n-
Step 4. Obtain the autocovariance function, by using the
general formula for an MA(o0) process.

Carrying out this calculation is an exercise.
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Causal, invertible ARMA models

P We say that the ARMA model [M9] is causal if its MA(c0)
representation is a convergent series.

P Recall that causality is about writing Y,, in terms of the
driving noise process {€,,, €, 1,€, 9, }-

v

Invertibility is about writing €, in terms of Y,,, Y,,

v

To assess causality, we consider the convergence of the Taylor
series expansion of 6(x)/¢(z) in the ARMA representation

0(B)

"B

P> To assess invertibility, we consider the convergence of the

Taylor series expansion of ¢(x)/6(x) in the inversion of the
ARMA model given by
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P> Fortunately, there is a simple way to check causality and
invertibility without calculating the Taylor series.

P The ARMA model is causal if the AR polynomial,

P(x) =1 — 1 — ppx? — -+ — ¢px?

has all its roots (i.e., solutions to ¢(x) = 0) outside the unit
circle in the complex plane.

P The ARMA model is invertible if the MA polynomial,
0(x) =1+ 0,24 Oyz* + - + 0,29

has all its roots outside the unit circle.
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Question. It is undesirable to use a non-invertible model
for data analysis. Why? Hint: One answer to this question
involves diagnosing model misspecification.

We can check the roots using NumPy's roots function. For

example, consider the MA(2) model, Y,, =€, + 2¢, 1 + 2¢,,_5.
The roots to f(x) = 1 + 2x + 222 are

roots = np.roots([2, 2, 1])
print (roots)

[-0.5+0.5j -0.5-0.5j]

P Finding the absolute value shows that we have two roots
inside the unit circle, so this MA(2) model is not invertible.

print(np.abs(roots))

[0.70710678 0.70710678]

P In this case, you should be able to find the roots algebraically.
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Reducible and irreducible ARMA models

P Write the ARMA model written as a ratio of two polynomials,

0(B)
=l 20
5(B) 0
If the two polynomials ¢(x) and 6(x) share a common factor,
it can be canceled out without changing the model.

P The fundamental theorem of algebra says that every
polynomial ¢(z) =1 — ¢x — - — ¢,z of degree p can be
written in the form

(I—z/A) x (L—x/Xy) x - x (L—=2/N,), (21)

where A;., are the p roots of the polynomial, which may be
real or complex valued.

P The Taylor series expansion of ¢(B)~! is convergent if and
only if (1 — B/);)~! has a convergent expansion for each
i € 1:p. This happens if |\;| > 1 for each i.
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P> The polynomials ¢(x) and 6(x) share a common factor if, and
only if, they share a common root.

P It is not clear, just from looking at the model equations, that

) 1 1
Yn = EYnfl - BYn72 + €n — Cn—1 + Zen72 (22)
is exactly the same model as

1 1
Yn = gYnfl + € — §€n71'

(23)
P To see this, you have to do the math! We see that the second
of these equations is derived from the first by canceling out
the common factor (1 — 0.5B) in the ARMA model

specification.

ar_roots = np.roots([1/6, -5/6, 1])
ma_roots = np.roots([1/4, -1, 1])
print (f"AR roots: {ar_roots}, MA roots: {ma_rootsl}")

AR roots: [3. 2.], MA roots: [2.00000001 1.99999999]
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>
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models and oscillating behavior

Non-random physical processes evolving through time have
been modeled using differential equations ever since the
ground-breaking work by Newton [1].

The data and systems we want to study have considerable
randomness (unpredictability).

However, it is helpful to study related deterministic systems.

The deterministic skeleton of a time series model is the
non-random process obtained by removing randomness from a
stochastic model.

For a discrete-time model, we can define a continuous-time
deterministic skeleton by replacing the discrete-time difference
equation with a differential equation.

Rather than deriving a deterministic skeleton from a
stochastic time series model, we can instead add stochasticity

to a deterministic model. 21 /32



Oscillatory behavior modeled using an AR(2) process

P In physics, a basic model for processes that oscillate (springs,
pendulums, vibrating machine parts, etc) is simple harmonic
motion.

P> The differential equation for a simple harmonic motion process
x(t) is
d2
[M10] ﬁx(t) = —w?z(t).

P> This is a second order linear differential equation with constant
coefficients. Such equations have a closed form solution. You
may already know that the solution to M10 is sinusoidal.

P Finding the solution to a linear differential equation is very
similar to the task of solving difference equations which is
useful elsewhere in time series analysis. It also gives a chance
to review complex numbers. Let's see how it is done.
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1. Look for solutions of the form x(t) = e*. Substituting this
into the differential equation [M10] we get

A2eM = 2, (24)

At

2. Canceling the term e”*, we see that this has two solutions,

with
A =4wi, wherei=+Vv—1. (25)

3. The linearity of the differential equation means that if y, (¢)

and y,(t) are two solutions, then ay, (t) + by, (t) is also a
solution for any a and b. So, the general solution to M10 is

z(t) = ae™! 4 be ™t (26)

Here, a and b could be complex numbers.
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4. We may suspect that z(t) = ae’™! + be~* is sinusoidal by
recalling the identities

) . 1 . )
sin(wt) = i(em — e Wty cos(wt) = 5(6“‘” + e t),
i
(27)

5. For physical systems, x(t) is real so we know that the complex

part must be zero. Thus, the two terms on the right are

complex conjugates. Writing a = (A/2)e’®, this implies

b= (A/2)e ' for real A and ¢. The factor of 1/2 is

arbitrary. This gives

A, . 4
.Z‘(t) — 5 (ez(thrqb) + e*l<wt+¢)> ) (28)

6. Putting together these identities we get
x(t) = Acos(wt + ¢), (29)

which explains why the factor of 1/2 is convenient.
24/32



Frequency, amplitude and phase for x(t) = A cos(wt + ¢)

P wis called the frequency, and ¢ is called the phase.

P Angle is usually measured in radians, so the units of w are
radians per unit time, and units of ¢ are radians.

P The period is 27/w, the time for one cycle.

P Ais called the amplitude.

P The frequency of the oscillation is determined by w in M10,
but the amplitude and phase are unspecified constants which
may be determined by initial conditions.

P It may be convenient to rescale to cycles per unit time,

x(t) = Acos(2m(W't + ¢")) (30)

where W’ = w/2m, ¢' = ¢/2m.
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P A discrete time version of M10 is a deterministic linear
2
difference equation, replacing j? by the second difference
operator, A2 = (1 — B)2. This corresponds to a deterministic
model equation,
2. _ 2
A Yp = —WYn-

P Adding white noise, and expanding out A% = (1 — B)?, we
get a stochastic model,
_ 2Yn—1 Y —2

M11 Y = ——_n
[ ) "ol 4w? 14 w?

+€,.

P Model M11 may be appropriate to describe systems that have
semi-regular but somewhat erratic fluctuations, called
quasi-periodic behavior. Such behavior is evident in business
cycles or wild animal populations.
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We look at a simulation from M11 with w = 0.1 and

€, ~ 1id N[0, 1]. From our exact solution to the deterministic
skeleton, we expect that a typical period of the oscillations should
be 27 /w ~ 60.

omega = 0.1

ar_coefs = [2/(1l+omega**2), -1/(l+omegax**2)]

# Using ArmaProcess for simulation

ar_poly = np.r_[1, -np.array(ar_coefs)]

ma_poly = np.array([1])

ar_process = ArmaProcess(ar_poly, ma_poly)

X = ar_process.generate_sample(nsample=500,scale=1.0)

fig, (axl,ax2) = plt.subplots(l,2,figsize=(12,3.5))
axl.plot(X); axl.set_ylabel('X")

# Compute theoretical ACF

acf_vals = ar_process.acf (lags=500)

ax2.plot(acf_vals); ax2.set_ylabel('ACF of X')
ax2.set_xlabel('Lag')

plt.tight_layout(); plt.show() 27/



Quasi-periodic AR(2) simulation
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P Quasi-periodic fluctuations are phase locked when the
random perturbations are not able to knock the oscillations
away from being close to their initial phase.

P Eventually, the randomness should mean that the process is

equally likely to have any phase, regardless of the initial phase.

Question. What is the timescale on which the simulated model
shows phase locked behavior? Equivalently, on what timescale does
the phase of the fluctuations lose memory of its initial phase?
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Further reading

P Section 2.2 of Shumway and Stoffer [2] introduces the
backshift operator.

P> Section 3.1 develops the theory of ARMA models in a similar
way to this chapter.

P> Section 3.2 gives a difference equation approach to calculating
ARMA autocovariance functions which gives an opportunity
to practice algebra similar to our study of the AR(2) model.
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