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Definition: A stationary causal linear process is a time series
model that can be written as

[M7] 𝑌𝑛 = 𝜇 + 𝑔0𝜖𝑛 + 𝑔1𝜖𝑛−1 + 𝑔2𝜖𝑛−2 + 𝑔3𝜖𝑛−3 + 𝑔4𝜖𝑛−4 + …
where {𝜖𝑛, 𝑛 = … , −2, −1, 0, 1, 2, … } is a white noise process,
defined for all integer timepoints, with variance Var(𝜖𝑛) = 𝜎2.

▶ We do not need to define any initial values. The doubly
infinite noise process {𝜖𝑛, 𝑛 = … , −2, −1, 0, 1, 2, … } is
enough to define 𝑌𝑛 for every 𝑛 as long as the infinite sum in
[M7] converges.

Question. When does “stationary” here mean weak stationarity,
and when does it mean strict stationarity?
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▶ causal in [M7] refers to {𝜖𝑛} being a causal driver of {𝑌𝑛}.
The value of 𝑌𝑛 depends only on noise process values already
determined by time 𝑛.

▶ This matches a requirement that causes must precede effects
(Bradford Hill criteria).

▶ linear refers to linearity of 𝑌𝑛 as a function of {𝜖𝑛}.
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The autocovariance function for a linear process

𝛾ℎ = Cov(𝑌𝑛, 𝑌𝑛+ℎ) (1)

= Cov (
∞

∑
𝑗=0

𝑔𝑗𝜖𝑛−𝑗,
∞

∑
𝑘=0

𝑔𝑘𝜖𝑛+ℎ−𝑘) (2)

=
∞

∑
𝑗=0

∞
∑
𝑘=0

𝑔𝑗𝑔𝑘Cov(𝜖𝑛−𝑗, 𝜖𝑛+ℎ−𝑘) (3)

=
∞

∑
𝑗=0

𝑔𝑗𝑔𝑗+ℎ𝜎2, for ℎ ≥ 0. (4)

▶ For the autocovariance function to be finite, we need
∞

∑
𝑗=0

𝑔2
𝑗 < ∞. (5)

▶ Note: we assumed we can move ∑∞
𝑗=0 ∑∞

𝑘=0 through Cov.
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▶ The interchange of expectation and infinite sums cannot be
taken for granted.
Cov (∑𝑚

𝑖=1 𝑋𝑖, ∑𝑛
𝑗=1 𝑌𝑗) = ∑𝑚

𝑖=1 ∑𝑛
𝑗=1 Cov(𝑋𝑖, 𝑌𝑗) is true

for finite 𝑚 and 𝑛, but not necessarily for infinite sums.
▶ In this course, we do not focus on interchange issues, but we

try to notice when we make assumptions.
▶ The interchange of ∑∞

0 and Cov can be justified by requiring
a stronger condition,

∞
∑
𝑗=0

|𝑔𝑗| < ∞. (6)

▶ The MA(q) model that we defined in equation M3 is an
example of a stationary, causal linear process.

▶ The general stationary, causal linear process model, M7, can
also be called the MA(∞) model.
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Causal and non-causal AR(1) models
The stochastic difference equation defining the AR(1) model,

[M8] 𝑌𝑛 = 𝜙𝑌𝑛−1 + 𝜖𝑛,

has a causal solution,

[M8.1] 𝑌𝑛 = ∑∞
𝑗=0 𝜙𝑗𝜖𝑛−𝑗.

It also has a non-causal solution,

[M8.2] 𝑌𝑛 = − ∑∞
𝑗=1 𝜙−𝑗𝜖𝑛+𝑗.

Question. Work through the algebra to check that M8.1 and
M8.2 both solve equation M8.
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Question. For what values of 𝜙 is the causal solution M8.1 a
convergent infinite sum, meaning that it converges to a random
variable with finite variance? For what values is the non-causal
solution M8.2 a convergent infinite sum?
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Using the MA(∞) representation to compute the
autocovariance of an ARMA model

Question. The linear process representation can be a convenient
way to calculate autocovariance functions. Use the linear process
representation in M8.1, together with our expression for the
autocovariance of the general linear process M7, to get an
expression for the autocovariance function of the AR(1) model.
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ARMA models written using the backshift operator
▶ The backshift operator 𝐵, also called the lag operator, is

𝐵𝑌𝑛 = 𝑌𝑛−1. (7)

▶ The difference operator Δ = 1 − 𝐵 is
Δ𝑌𝑛 = (1 − 𝐵)𝑌𝑛 = 𝑌𝑛 − 𝑌𝑛−1. (8)

▶ Powers of the backshift operator correspond to different time
shifts, e.g.,

𝐵2𝑌𝑛 = 𝐵(𝐵𝑌𝑛) = 𝐵(𝑌𝑛−1) = 𝑌𝑛−2. (9)

▶ We can also take a second difference,

Δ2𝑌𝑛 = (1 − 𝐵)(1 − 𝐵)𝑌𝑛
= (1 − 2𝐵 + 𝐵2)𝑌𝑛 = 𝑌𝑛 − 2𝑌𝑛−1 + 𝑌𝑛−2. (10)
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▶ The backshift operator is linear, i.e.,

𝐵(𝛼𝑋𝑛 + 𝛽𝑌𝑛) = 𝛼𝐵𝑋𝑛 + 𝛽𝐵𝑌𝑛 = 𝛼𝑋𝑛−1 + 𝛽𝑌𝑛−1 (11)

▶ Backshift operators and their powers can be added, multiplied
by each other, and multiplied by a scalar.

▶ Mathematically, backshift operators follow the same rules as
the algebra of polynomial functions.

▶ For example, a distributive rule for 𝛼 + 𝛽𝐵 is

(𝛼+𝛽𝐵)𝑌𝑛 = (𝛼𝐵0+𝛽𝐵1)𝑌𝑛 = 𝛼𝑌𝑛+𝛽𝐵𝑌𝑛 = 𝛼𝑌𝑛+𝛽𝑌𝑛−1.

▶ Mathematical properties we know about polynomials can be
used to work with backshift operators.

▶ The AR, MA and linear process model equations can all be
written in terms of polynomials in the backshift operator.
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▶ Write 𝜙(𝑥) = 1 − 𝜙1𝑥 − 𝜙2𝑥2 − ⋯ − 𝜙𝑝𝑥𝑝, an order 𝑝
polynomial. The equation M1 for the AR(p) model becomes

𝑌𝑛 − 𝜙1𝑌𝑛−1 − 𝜙2𝑌𝑛−2 − ⋯ − 𝜙𝑝𝑌𝑛−𝑝 = 𝜖𝑛, (12)

which can be written using the backshift operator as

[M1′] 𝜙(𝐵)𝑌𝑛 = 𝜖𝑛.
▶ Write 𝜃(𝑥) for a polynomial of order 𝑞,

𝜃(𝑥) = 1 + 𝜃1𝑥 + 𝜃2𝑥2 + ⋯ + 𝜃𝑞𝑥𝑞. (13)

▶ The MA(q) equation M3 is equivalent to

[M3′] 𝑌𝑛 = 𝜃(𝐵)𝜖𝑛.
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▶ If 𝑔(𝑥) is a function defined by the Taylor series

𝑔(𝑥) = 𝑔0 + 𝑔1𝑥 + 𝑔2𝑥2 + 𝑔3𝑥3 + 𝑔4𝑥4 + … , (14)

the stationary causal linear process equation [M7] is

[M7′] 𝑌𝑛 = 𝜇 + 𝑔(𝐵)𝜖𝑛.
▶ Whatever you know or learn about working with Taylor series

expansions helps you understand AR, MA and ARMA models.
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The general ARMA model
Putting together M1 and M3 suggests an autoregressive moving
average ARMA(p,q) model given by

[M9] 𝑌𝑛 = 𝜙1𝑌𝑛−1 + 𝜙2𝑌𝑛−2 + ⋯ + 𝜙𝑝𝑌𝑛−𝑝+
𝜖𝑛 + 𝜃1𝜖𝑛−1 + ⋯ + 𝜃𝑞𝜖𝑛−𝑞,

where {𝜖𝑛} is a white noise process. Using the backshift operator,
we can write this more succinctly as

[M9′] 𝜙(𝐵)𝑌𝑛 = 𝜃(𝐵)𝜖𝑛.

▶ Experience with data analysis suggests that models with both
AR and MA components often fit data better than a pure AR
or MA process.

▶ The general stationary ARMA(p,q) also has a mean 𝜇,

[M9″] 𝜙(𝐵)(𝑌𝑛 − 𝜇) = 𝜃(𝐵)𝜖𝑛.
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Obtaining the MA(∞) representation and autocovariance
of the ARMA(1,1) model

Consider 𝑌𝑛 = 𝜙𝑌𝑛−1 + 𝜖𝑛 + 𝜃𝜖𝑛−1.

Step 1. Put the model in the form 𝑌𝑛 = 𝑔(𝐵)𝜖𝑛.

Formally, we can write

(1 − 𝜙𝐵)𝑌𝑛 = (1 + 𝜃𝐵)𝜖𝑛, (15)

which algebraically is equivalent to

𝑌𝑛 = ( 1 + 𝜃𝐵
1 − 𝜙𝐵) 𝜖𝑛. (16)

We can write this as
𝑌𝑛 = 𝑔(𝐵)𝜖𝑛, (17)

where
𝑔(𝑥) = ( 1 + 𝜃𝑥

1 − 𝜙𝑥) . (18)
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Step 2. Work out the Taylor series expansion,

𝑔(𝑥) = 𝑔0 + 𝑔1𝑥 + 𝑔2𝑥2 + 𝑔3𝑥3 + … (19)

You can do this either by hand or using your favorite math
software.

Step 3. Obtain the MA(∞) representation, by putting the
Taylor series into the form 𝑌𝑛 = 𝑔(𝐵)𝜖𝑛.

Step 4. Obtain the autocovariance function, by using the
general formula for an MA(∞) process.

Carrying out this calculation is an exercise.
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Causal, invertible ARMA models
▶ We say that the ARMA model [M9] is causal if its MA(∞)

representation is a convergent series.
▶ Recall that causality is about writing 𝑌𝑛 in terms of the

driving noise process {𝜖𝑛, 𝜖𝑛−1, 𝜖𝑛−2, … }.
▶ Invertibility is about writing 𝜖𝑛 in terms of 𝑌𝑛, 𝑌𝑛−1, ….
▶ To assess causality, we consider the convergence of the Taylor

series expansion of 𝜃(𝑥)/𝜙(𝑥) in the ARMA representation

𝑌𝑛 = 𝜃(𝐵)
𝜙(𝐵)𝜖𝑛.

▶ To assess invertibility, we consider the convergence of the
Taylor series expansion of 𝜙(𝑥)/𝜃(𝑥) in the inversion of the
ARMA model given by

𝜖𝑛 = 𝜙(𝐵)
𝜃(𝐵) 𝑌𝑛.
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▶ Fortunately, there is a simple way to check causality and
invertibility without calculating the Taylor series.

▶ The ARMA model is causal if the AR polynomial,

𝜙(𝑥) = 1 − 𝜙1𝑥 − 𝜙2𝑥2 − ⋯ − 𝜙𝑝𝑥𝑝

has all its roots (i.e., solutions to 𝜙(𝑥) = 0) outside the unit
circle in the complex plane.

▶ The ARMA model is invertible if the MA polynomial,

𝜃(𝑥) = 1 + 𝜃1𝑥 + 𝜃2𝑥2 + ⋯ + 𝜃𝑞𝑥𝑞

has all its roots outside the unit circle.
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Question. It is undesirable to use a non-invertible model
for data analysis. Why? Hint: One answer to this question
involves diagnosing model misspecification.

We can check the roots using NumPy’s roots function. For
example, consider the MA(2) model, 𝑌𝑛 = 𝜖𝑛 + 2𝜖𝑛−1 + 2𝜖𝑛−2.
The roots to 𝜃(𝑥) = 1 + 2𝑥 + 2𝑥2 are
roots = np.roots([2, 2, 1])
print(roots)

[-0.5+0.5j -0.5-0.5j]

▶ Finding the absolute value shows that we have two roots
inside the unit circle, so this MA(2) model is not invertible.

print(np.abs(roots))

[0.70710678 0.70710678]

▶ In this case, you should be able to find the roots algebraically.
In general, numerical evaluation of roots is useful. 18 / 32



Reducible and irreducible ARMA models
▶ Write the ARMA model written as a ratio of two polynomials,

𝑌𝑛 = 𝜃(𝐵)
𝜙(𝐵)𝜖𝑛. (20)

If the two polynomials 𝜙(𝑥) and 𝜃(𝑥) share a common factor,
it can be canceled out without changing the model.

▶ The fundamental theorem of algebra says that every
polynomial 𝜙(𝑥) = 1 − 𝜙1𝑥 − ⋯ − 𝜙𝑝𝑥𝑝 of degree 𝑝 can be
written in the form

(1 − 𝑥/𝜆1) × (1 − 𝑥/𝜆2) × ⋯ × (1 − 𝑥/𝜆𝑝), (21)

where 𝜆1∶𝑝 are the 𝑝 roots of the polynomial, which may be
real or complex valued.

▶ The Taylor series expansion of 𝜙(𝐵)−1 is convergent if and
only if (1 − 𝐵/𝜆𝑖)−1 has a convergent expansion for each
𝑖 ∈ 1 ∶ 𝑝. This happens if |𝜆𝑖| > 1 for each 𝑖.

19 / 32

https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra


▶ The polynomials 𝜙(𝑥) and 𝜃(𝑥) share a common factor if, and
only if, they share a common root.

▶ It is not clear, just from looking at the model equations, that

𝑌𝑛 = 5
6𝑌𝑛−1 − 1

6𝑌𝑛−2 + 𝜖𝑛 − 𝜖𝑛−1 + 1
4𝜖𝑛−2 (22)

is exactly the same model as

𝑌𝑛 = 1
3𝑌𝑛−1 + 𝜖𝑛 − 1

2𝜖𝑛−1. (23)

▶ To see this, you have to do the math! We see that the second
of these equations is derived from the first by canceling out
the common factor (1 − 0.5𝐵) in the ARMA model
specification.

ar_roots = np.roots([1/6, -5/6, 1])
ma_roots = np.roots([1/4, -1, 1])
print(f"AR roots: {ar_roots}, MA roots: {ma_roots}")

AR roots: [3. 2.], MA roots: [2.00000001 1.99999999]
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AR(2) models and oscillating behavior
▶ Non-random physical processes evolving through time have

been modeled using differential equations ever since the
ground-breaking work by Newton [1].

▶ The data and systems we want to study have considerable
randomness (unpredictability).

▶ However, it is helpful to study related deterministic systems.
▶ The deterministic skeleton of a time series model is the

non-random process obtained by removing randomness from a
stochastic model.

▶ For a discrete-time model, we can define a continuous-time
deterministic skeleton by replacing the discrete-time difference
equation with a differential equation.

▶ Rather than deriving a deterministic skeleton from a
stochastic time series model, we can instead add stochasticity
to a deterministic model. 21 / 32



Oscillatory behavior modeled using an AR(2) process
▶ In physics, a basic model for processes that oscillate (springs,

pendulums, vibrating machine parts, etc) is simple harmonic
motion.

▶ The differential equation for a simple harmonic motion process
𝑥(𝑡) is

[M10] 𝑑2

𝑑𝑡2 𝑥(𝑡) = −𝜔2𝑥(𝑡).

▶ This is a second order linear differential equation with constant
coefficients. Such equations have a closed form solution. You
may already know that the solution to M10 is sinusoidal.

▶ Finding the solution to a linear differential equation is very
similar to the task of solving difference equations which is
useful elsewhere in time series analysis. It also gives a chance
to review complex numbers. Let’s see how it is done.
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1. Look for solutions of the form 𝑥(𝑡) = 𝑒𝜆𝑡. Substituting this
into the differential equation [M10] we get

𝜆2𝑒𝜆𝑡 = −𝜔2𝑒𝜆𝑡. (24)

2. Canceling the term 𝑒𝜆𝑡, we see that this has two solutions,
with

𝜆 = ±𝜔𝑖, where 𝑖 =
√

−1. (25)

3. The linearity of the differential equation means that if 𝑦1(𝑡)
and 𝑦2(𝑡) are two solutions, then 𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡) is also a
solution for any 𝑎 and 𝑏. So, the general solution to M10 is

𝑥(𝑡) = 𝑎𝑒𝑖𝜔𝑡 + 𝑏𝑒−𝑖𝜔𝑡. (26)

Here, 𝑎 and 𝑏 could be complex numbers.
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4. We may suspect that 𝑥(𝑡) = 𝑎𝑒𝑖𝜔𝑡 + 𝑏𝑒−𝑖𝜔𝑡 is sinusoidal by
recalling the identities

sin(𝜔𝑡) = 1
2𝑖(𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡), cos(𝜔𝑡) = 1

2(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡).
(27)

5. For physical systems, 𝑥(𝑡) is real so we know that the complex
part must be zero. Thus, the two terms on the right are
complex conjugates. Writing 𝑎 = (𝐴/2)𝑒𝑖𝜙, this implies
𝑏 = (𝐴/2)𝑒−𝑖𝜙 for real 𝐴 and 𝜙. The factor of 1/2 is
arbitrary. This gives

𝑥(𝑡) = 𝐴
2 (𝑒𝑖(𝜔𝑡+𝜙) + 𝑒−𝑖(𝜔𝑡+𝜙)) . (28)

6. Putting together these identities we get

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙), (29)

which explains why the factor of 1/2 is convenient.
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Frequency, amplitude and phase for 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙)
▶ 𝜔 is called the frequency, and 𝜙 is called the phase.
▶ Angle is usually measured in radians, so the units of 𝜔 are

radians per unit time, and units of 𝜙 are radians.
▶ The period is 2𝜋/𝜔, the time for one cycle.
▶ 𝐴 is called the amplitude.
▶ The frequency of the oscillation is determined by 𝜔 in M10,

but the amplitude and phase are unspecified constants which
may be determined by initial conditions.

▶ It may be convenient to rescale to cycles per unit time,

𝑥(𝑡) = 𝐴 cos(2𝜋(𝜔′𝑡 + 𝜙′)) (30)

where 𝜔′ = 𝜔/2𝜋, 𝜙′ = 𝜙/2𝜋.
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▶ A discrete time version of M10 is a deterministic linear
difference equation, replacing 𝑑2

𝑑𝑡2 by the second difference
operator, Δ2 = (1 − 𝐵)2. This corresponds to a deterministic
model equation,

Δ2𝑦𝑛 = −𝜔2𝑦𝑛.

▶ Adding white noise, and expanding out Δ2 = (1 − 𝐵)2, we
get a stochastic model,

[M11] 𝑌𝑛 = 2𝑌𝑛−1
1 + 𝜔2 − 𝑌𝑛−2

1 + 𝜔2 + 𝜖𝑛.

▶ Model M11 may be appropriate to describe systems that have
semi-regular but somewhat erratic fluctuations, called
quasi-periodic behavior. Such behavior is evident in business
cycles or wild animal populations.
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We look at a simulation from M11 with 𝜔 = 0.1 and
𝜖𝑛 ∼ iid 𝑁[0, 1]. From our exact solution to the deterministic
skeleton, we expect that a typical period of the oscillations should
be 2𝜋/𝜔 ≈ 60.
omega = 0.1
ar_coefs = [2/(1+omega**2), -1/(1+omega**2)]
# Using ArmaProcess for simulation
ar_poly = np.r_[1, -np.array(ar_coefs)]
ma_poly = np.array([1])
ar_process = ArmaProcess(ar_poly, ma_poly)
X = ar_process.generate_sample(nsample=500,scale=1.0)

fig,(ax1,ax2) = plt.subplots(1,2,figsize=(12,3.5))
ax1.plot(X); ax1.set_ylabel('X')
# Compute theoretical ACF
acf_vals = ar_process.acf(lags=500)
ax2.plot(acf_vals); ax2.set_ylabel('ACF of X')
ax2.set_xlabel('Lag')
plt.tight_layout(); plt.show() 27 / 32



Quasi-periodic AR(2) simulation
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▶ Quasi-periodic fluctuations are phase locked when the
random perturbations are not able to knock the oscillations
away from being close to their initial phase.

▶ Eventually, the randomness should mean that the process is
equally likely to have any phase, regardless of the initial phase.

Question. What is the timescale on which the simulated model
shows phase locked behavior? Equivalently, on what timescale does
the phase of the fluctuations lose memory of its initial phase?
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Further reading
▶ Section 2.2 of Shumway and Stoffer [2] introduces the

backshift operator.
▶ Section 3.1 develops the theory of ARMA models in a similar

way to this chapter.
▶ Section 3.2 gives a difference equation approach to calculating

ARMA autocovariance functions which gives an opportunity
to practice algebra similar to our study of the AR(2) model.
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