Statistics 620
Final exam, Fall 2013

1. Suppose that traffic on a road follows a Poisson process with rate A cars per minute. A chicken
needs a gap of length at least ¢ minutes in the traffic to cross the road. To compute the time the
chicken will have to wait to cross the road, let ¢1,t5, t3,... be the interarrival times for the cars and
let J =min{j:t; >c}. If T, =t1 +--- + tp, then the chicken will start to cross the road at time
T7_1 and complete his journey at time T;_1 + c.

(a) [4 points]. Suppose T is exponentially distributed with rate A. Find E[T'| T < ¢J.

Hint: Using the identity E[T] = P(T < ¢)E[T|T < ]+ P(T > ¢)E[T'|T > ¢| leads to a nice
solution, though you can also solve the problem by direct calculation.

Solution:
E(T|T < )
E(T|T _=
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(b) [6 points] Use part (a) to show E(Ty_; + ¢) = (e** — 1)/\. If you have not solved (a), you may
leave your answer in terms of E[T'|T < ¢J.

Solution: Note that
J—1

Tia+c=clysq+ (1 +c+ Z te)lie <cy -
k=2

Taking expectation on both sides above, we have

J—1
E(Ty—1+4c¢) =cP(t;1 > c) + P(t1 < o)E (t1]t1 < ¢) + P(t1 < ¢)E <(Z tp +c)
k=2
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Note that in above, by result in (a), the second term on the r.h.s. of (1) equals —ce ™+ (1—e™*¢),
and the third term equals P(t; < ¢)E(Ty_1 + ¢) by memoryless property. Hence, it follows that
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2. We investigate a martingale solution to the same situation problem from Question 1. As before,
traffic on a road follows a Poisson process with rate A cars per minute. A chicken needs a gap of
length at least ¢ minutes in the traffic to cross the road. ti,to,t3,... are the interarrival times for
the cars and J = min{j : t; > ¢}. If T}, = t1 + - - - + t,,, then the chicken will start to cross the road
at time 77;_; and complete his journey at time 77;_; + c. Note that T, — (n/)\) is a martingale.

(a) [3 points| Argue that J is a stopping time for ¢, to, ..., and explain why J — 1 is not a stopping
time.



Solution: Let X, =T, — %. J is a stopping time because
{J: n} = {Tl < CvTQ -1 < C)“-anfl -T2 < CaTn —Th1> C}
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which is determined by the value of X1, ..., X,,. Similarly, {J—1=n} = {J = n+1} is determined
by the value of X1,..., X,4+1. Thus, J is a stopping time, but J — 1 is not.

(b) [7 points] Use a martingale argument to show that E(T;_; +¢) = (e’ — 1)/\.

Solution: First, we have

J o J J EJ
E(Tj_l—l—c):E(TJ—tJ—I—C):E(TJ—X—FX—tJ-i—C):E(TJ—X)-FT—]E@J)—{—C.

We calculate the three expectations in the r.h.s. above respectively. It is easy to see that J has
geometric distributuion with parameter p = P(¢t; > ¢) = e~ *¢. Then EJ = e“*. Also,

1

To calculate E(Ty — %), since we have shown that X, = T}, — ¥ is a martingale and J is a stopping
time, by the fact that EJ < oo and that

1 1
]E(|Xn+1—Xn| X1>~--,Xn) =E<t1—)\’ )X17-~-,Xn> SE(UH—X < 00,
we apply the martingale stopping theorem to obtain
J 1
E(T;— —)=E(T1 —-)=0.
Ty~ 5) =E(Ti - 5)
Plugging in, we have
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3. We study a queue with impatient customers. Customers arrive at a single server as a Poisson
process with rate A and require an exponential amount of service with rate p. customers waiting
in line are impatient and if they are not in service they will leave at rate ¢ independent of their
position in the queue. Show that for any é > 0 the system has a stationary distribution, and find
an expression for this distribution.

Solution: Let X (t) denote the process. It has states {0,1,2,...}. We can write the transition
matrix as follows.

Giji+1 = A
Qi1 = p+(—1), i>1
¢irx = 0, otherwise

It is clear that we have a death and birth process. THen, the stationary distributuion P; satisfies:

o0
Zpi =1 and Pgiir1 = Pit1Giv1,i- (2)
i—0
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By solving (2), we have
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To see the existence of stationary distribution, one can Check that Py > 0. Indeed, since A > 0,
there exists J € N such that p+ Jd > X. Then, it follows that
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4. A cocaine dealer is standing on a street corner. Customers arrive at times of a Poisson process
with rate A. The customer and the dealer then disappear from the street for an amount of time
with distribution G while the transaction is completed. Customers that arrive during this time go
away never to return.

(a) [6 points] At what rate does the dealer make sales? Explain your reasoning.

Solution: We can define a renewal process, each cycle ending when a transaction is finished. Let

X; denote the length of cycle i. Let T be a random variable with distributuion G. Then,
1

E(Xi) = y +E(T).

The long-run rate of transactions is then 1/E[X].

(b) [5 points] What fraction of customers are lost? Explain your reasoning.
E(T)

Solution: The fraction of customers that are lost is the stationary distribution of state 1, i.e., TR
A

5. Let {Z(t),0 <t < 1} be a Brownian bridge, i.e., a Gaussian diffusion with E[Z(¢)] = 0 and
Cov(Z(s), Z(t)) = s Nt — st. Define X(t) = (1+¢)Z(t/(1 +t)). Show that {X(¢),t > 0} is a
standard Brownian motion.

Solution: Since Z(t) is a Brownian bridge, it is a Gaussian diffusion. Then X (¢) is a Gaussian
diffusion. Now we prove

E(X(t)) =0 and Cov(X(s),X(t))=sAt—st.
First,

E(X(1) = (1+0E (z <1it>> — (1+0E (B (1’5“) - 1’5+t3u)>
— (141 (O_lt—i—t> —0

Next, by the fact that Z(t) is a Brownian bridge,

Cov(X(s), X(1)) = Cov <<1+5>Z (lis) (1+6)2 <1t+t>>

t st
_ (1+s)(1+75)1+ Myt T O s+

= s(I1+t)At(l+s)—st=sAt—st.

We have thus proved that X (t) is a standard Brownian motion.



