Statistics 620 Final exam, Fall 2013

1. Suppose that traffic on a road follows a Poisson process with rate λ cars per minute. A chicken needs a gap of length at least c minutes in the traffic to cross the road. To compute the time the chicken will have to wait to cross the road, let t_1, t_2, t_3, \ldots be the interarrival times for the cars and let $J = \min\{j : t_j > c\}$. If $T_n = t_1 + \cdots + t_n$, then the chicken will start to cross the road at time T_{J-1} and complete his journey at time $T_{J-1} + c$.

(a) [4 points]. Suppose T is exponentially distributed with rate λ . Find $\mathbb{E}[T | T < c]$.

Hint: Using the identity $\mathbb{E}[T] = \mathbb{P}(T < c) \mathbb{E}[T | T < c] + \mathbb{P}(T > c) \mathbb{E}[T | T > c]$ leads to a nice solution, though you can also solve the problem by direct calculation.

<u>Solution</u>:

$$\begin{split} \mathbb{E}(T|T < c) &= \frac{\mathbb{E}(T|T < c)}{\mathbb{P}(T < c)} \\ &= \frac{\int_0^c t\lambda e^{-\lambda t} dt}{1 - e^{-c}} = \frac{-ce^{-\lambda c} + \frac{1}{\lambda}(1 - e^{-\lambda c})}{1 - e^{-c}} \,. \end{split}$$

(b) [6 points] Use part (a) to show $\mathbb{E}(T_{J-1}+c) = (e^{\lambda c}-1)/\lambda$. If you have not solved (a), you may leave your answer in terms of $\mathbb{E}[T | T < c]$.

Solution: Note that

$$T_{J-1} + c = c \, \mathbb{I}_{\{t_1 > c\}} + (t_1 + c + \sum_{k=2}^{J-1} t_k) \mathbb{I}_{\{t_1 \le c\}}.$$

Taking expectation on both sides above, we have

$$\mathbb{E}(T_{J-1}+c) = c\mathbb{P}(t_1 > c) + \mathbb{P}(t_1 \le c)\mathbb{E}(t_1|t_1 \le c) + \mathbb{P}(t_1 \le c)\mathbb{E}\left(\left(\sum_{k=2}^{J-1} t_k + c\right) \middle| t_1 \le c\right).$$
(1)

Note that in above, by result in (a), the second term on the r.h.s. of (1) equals $-ce^{-\lambda c} + \frac{1}{\lambda}(1-e^{-\lambda c})$, and the third term equals $\mathbb{P}(t_1 \leq c)\mathbb{E}(T_{J-1}+c)$ by memoryless property. Hence, it follows that

$$\mathbb{E}(T_{J-1}+c) = \frac{ce^{-\lambda c} + \left(-ce^{-\lambda c} + \frac{1}{\lambda}(1-e^{-\lambda c})\right)}{\mathbb{P}(t_1 > c)}$$
$$= \frac{\frac{1}{\lambda}\left(1-e^{-\lambda c}\right)}{e^{-\lambda c}} = \frac{1}{\lambda}\left(e^{\lambda c} - 1\right).$$

2. We investigate a martingale solution to the same situation problem from Question 1. As before, traffic on a road follows a Poisson process with rate λ cars per minute. A chicken needs a gap of length at least c minutes in the traffic to cross the road. t_1, t_2, t_3, \ldots are the interarrival times for the cars and $J = \min\{j: t_j > c\}$. If $T_n = t_1 + \cdots + t_n$, then the chicken will start to cross the road at time T_{J-1} and complete his journey at time $T_{J-1} + c$. Note that $T_n - (n/\lambda)$ is a martingale. (a) [3 points] Argue that J is a stopping time for t_1, t_2, \ldots , and explain why J-1 is not a stopping time.

<u>Solution</u>: Let $X_n = T_n - \frac{n}{\lambda}$. J is a stopping time because

$$\{J = n\} = \{T_1 < c, T_2 - T_1 < c, \dots, T_{n-1} - T_{n-2} < c, T_n - T_{n-1} > c\}$$

=
$$\{X_1 + \frac{1}{\lambda} < c, X_2 - X_1 + \frac{1}{\lambda} < c, \dots, X_{n-1} - X_{n-2} + \frac{1}{\lambda} < cX_n - X_{n-1} > c\},$$

which is determined by the value of X_1, \ldots, X_n . Similarly, $\{J-1=n\} = \{J=n+1\}$ is determined by the value of X_1, \ldots, X_{n+1} . Thus, J is a stopping time, but J-1 is not.

(b) [7 points] Use a martingale argument to show that $\mathbb{E}(T_{J-1}+c) = (e^{\lambda c}-1)/\lambda$. Solution: First, we have

$$\mathbb{E}(T_{J-1}+c) = \mathbb{E}(T_J - t_J + c) = \mathbb{E}(T_J - \frac{J}{\lambda} + \frac{J}{\lambda} - t_J + c) = \mathbb{E}(T_J - \frac{J}{\lambda}) + \frac{\mathbb{E}J}{\lambda} - \mathbb{E}(t_J) + c.$$

We calculate the three expectations in the r.h.s. above respectively. It is easy to see that J has geometric distribution with parameter $p = \mathbb{P}(t_1 > c) = e^{-\lambda c}$. Then $\mathbb{E}J = e^{c\lambda}$. Also,

$$\mathbb{E}(t_J) = \mathbb{E}(t_1|t_1 > c) = c + \mathbb{E}(t_1) = c + \frac{1}{\lambda}.$$

To calculate $\mathbb{E}(T_J - \frac{J}{\lambda})$, since we have shown that $X_n = T_n - \frac{n}{\lambda}$ is a martingale and J is a stopping time, by the fact that $\mathbb{E}J < \infty$ and that

$$\mathbb{E}\left(\left|X_{n+1}-X_{n}\right|\left|X_{1},\ldots,X_{n}\right)=\mathbb{E}\left(\left|t_{1}-\frac{1}{\lambda}\right|\left|X_{1},\ldots,X_{n}\right)\leq\mathbb{E}(t_{1})+\frac{1}{\lambda}<\infty\right.\right)$$

we apply the martingale stopping theorem to obtain

$$\mathbb{E}(T_J - \frac{J}{\lambda}) = \mathbb{E}(T_1 - \frac{1}{\lambda}) = 0.$$

Plugging in, we have

$$\mathbb{E}(T_{J-1}+c) = 0 + \frac{e^{\lambda c}}{\lambda} - c - \frac{1}{\lambda} + c = \frac{e^{\lambda c} - 1}{\lambda}.$$

3. We study a queue with impatient customers. Customers arrive at a single server as a Poisson process with rate λ and require an exponential amount of service with rate μ . customers waiting in line are impatient and if they are not in service they will leave at rate δ independent of their position in the queue. Show that for any $\delta > 0$ the system has a stationary distribution, and find an expression for this distribution.

<u>Solution</u>: Let X(t) denote the process. It has states $\{0, 1, 2, ...\}$. We can write the transition matrix as follows.

$$q_{i,i+1} = \lambda$$

$$q_{i,i-1} = \mu + (i-1)\delta, \quad i \ge 1$$

$$q_{i,k} = 0, \quad \text{otherwise}$$

It is clear that we have a death and birth process. Then, the stationary distribution P_i satisfies:

$$\sum_{i=0}^{\infty} P_i = 1 \quad \text{and} \quad P_i q_{i,i+1} = P_{i+1} q_{i+1,i} \,.$$
(2)

By solving (2), we have

$$P_{i} = \frac{\lambda^{i}}{\prod_{j=0}^{i-1}(\mu + j\delta)} P_{0}, \quad P_{0} = \left(1 + \sum_{i=1}^{\infty} \frac{\lambda^{i}}{\prod_{j=0}^{i-1}(\mu + j\delta)}\right)^{-1}.$$

To see the existence of stationary distribution, one can check that $P_0 > 0$. Indeed, since $\lambda > 0$, there exists $J \in \mathbb{N}$ such that $\mu + J\delta > \lambda$. Then, it follows that

$$\sum_{i=1}^{\infty} \frac{\lambda^i}{\prod_{j=0}^{i-1} (\mu+j\delta)} < \sum_{i=1}^{J-1} \frac{\lambda^i}{\prod_{j=0}^{i-1} (\mu+j\delta)} + \sum_{i=J}^{\infty} \left(\frac{\lambda}{\mu+J\delta}\right)^i < \infty.$$

4. A cocaine dealer is standing on a street corner. Customers arrive at times of a Poisson process with rate λ . The customer and the dealer then disappear from the street for an amount of time with distribution G while the transaction is completed. Customers that arrive during this time go away never to return.

(a) [5 points] At what rate does the dealer make sales? Explain your reasoning.

Solution: We can define a renewal process, each cycle ending when a transaction is finished. Let X_i denote the length of cycle *i*. Let *T* be a random variable with distribution *G*. Then,

$$\mathbb{E}(X_i) = \frac{1}{\lambda} + \mathbb{E}(T)$$

The long-run rate of transactions is then $1/\mathbb{E}[X_1]$.

(b) [5 points] What fraction of customers are lost? Explain your reasoning.

Solution: The fraction of customers that are lost is the stationary distribution of state 1, i.e., $\frac{\mathbb{E}(T)}{\frac{1}{\lambda} + \mathbb{E}(T)}$.

5. Let $\{Z(t), 0 \le t \le 1\}$ be a Brownian bridge, i.e., a Gaussian diffusion with $\mathbb{E}[Z(t)] = 0$ and $\operatorname{Cov}(Z(s), Z(t)) = s \land t - st$. Define X(t) = (1+t)Z(t/(1+t)). Show that $\{X(t), t \ge 0\}$ is a standard Brownian motion.

<u>Solution</u>: Since Z(t) is a Brownian bridge, it is a Gaussian diffusion. Then X(t) is a Gaussian diffusion. Now we prove

$$\mathbb{E}(X(t)) = 0$$
 and $\operatorname{Cov}(X(s), X(t)) = s \wedge t - st$.

First,

$$\begin{split} \mathbb{E}(X(t)) &= (1+t)\mathbb{E}\left(Z\left(\frac{t}{1+t}\right)\right) = (1+t)\mathbb{E}\left(B\left(\frac{t}{1+t}\right) - \frac{t}{1+t}B(1)\right) \\ &= (1+t)\left(0 - \frac{t}{1+t}\right) = 0\,. \end{split}$$

Next, by the fact that Z(t) is a Brownian bridge,

$$\begin{aligned} \operatorname{Cov}(X(s), X(t)) &= \operatorname{Cov}\left((1+s)Z\left(\frac{s}{1+s}\right), (1+t)Z\left(\frac{t}{1+t}\right)\right) \\ &= (1+s)(1+t)\frac{s}{1+s} \wedge \frac{t}{1+t} - \frac{st}{(1+s)(1+t)} \\ &= s(1+t) \wedge t(1+s) - st = s \wedge t - st \,. \end{aligned}$$

We have thus proved that X(t) is a standard Brownian motion.