
Statistics 620
Final exam, Fall 2013

1. Suppose that traffic on a road follows a Poisson process with rate λ cars per minute. A chicken
needs a gap of length at least c minutes in the traffic to cross the road. To compute the time the
chicken will have to wait to cross the road, let t1, t2, t3, . . . be the interarrival times for the cars and
let J = min{j : tj > c}. If Tn = t1 + · · ·+ tn, then the chicken will start to cross the road at time
TJ−1 and complete his journey at time TJ−1 + c.
(a) [4 points]. Suppose T is exponentially distributed with rate λ. Find E[T |T < c].
Hint: Using the identity E[T ] = P(T < c) E[T |T < c] + P(T > c) E[T |T > c] leads to a nice
solution, though you can also solve the problem by direct calculation.
Solution:

E(T |T < c) =
E(T |T < c)

P(T < c)

=

∫ c
0 tλe

−λtdt

1− e−c
=
−ce−λc + 1

λ(1− e−λc)
1− e−c

.

(b) [6 points] Use part (a) to show E(TJ−1 + c) = (eλc − 1)/λ. If you have not solved (a), you may
leave your answer in terms of E[T |T < c].
Solution: Note that

TJ−1 + c = c I{t1>c} + (t1 + c+
J−1∑
k=2

tk)I{t1≤c} .

Taking expectation on both sides above, we have

E(TJ−1 + c) = cP(t1 > c) + P(t1 ≤ c)E (t1|t1 ≤ c) + P(t1 ≤ c)E

(
(
J−1∑
k=2

tk + c)

∣∣∣∣∣ t1 ≤ c
)
. (1)

Note that in above, by result in (a), the second term on the r.h.s. of (1) equals −ce−λc+ 1
λ(1−e−λc),

and the third term equals P(t1 ≤ c)E(TJ−1 + c) by memoryless property. Hence, it follows that

E(TJ−1 + c) =
ce−λc +

(
−ce−λc + 1

λ(1− e−λc)
)

P(t1 > c)

=
1
λ

(
1− e−λc

)
e−λc

=
1
λ

(
eλc − 1

)
.

2. We investigate a martingale solution to the same situation problem from Question 1. As before,
traffic on a road follows a Poisson process with rate λ cars per minute. A chicken needs a gap of
length at least c minutes in the traffic to cross the road. t1, t2, t3, . . . are the interarrival times for
the cars and J = min{j : tj > c}. If Tn = t1 + · · ·+ tn, then the chicken will start to cross the road
at time TJ−1 and complete his journey at time TJ−1 + c. Note that Tn − (n/λ) is a martingale.
(a) [3 points] Argue that J is a stopping time for t1, t2, . . . , and explain why J −1 is not a stopping
time.
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Solution: Let Xn = Tn − n
λ . J is a stopping time because

{J = n} = {T1 < c, T2 − T1 < c, . . . , Tn−1 − Tn−2 < c, Tn − Tn−1 > c}

= {X1 +
1
λ
< c,X2 −X1 +

1
λ
< c . . . ,Xn−1 −Xn−2 +

1
λ
< cXn −Xn−1 > c} ,

which is determined by the value of X1, . . . , Xn. Similarly, {J−1 = n} = {J = n+1} is determined
by the value of X1, . . . , Xn+1. Thus, J is a stopping time, but J − 1 is not.

(b) [7 points] Use a martingale argument to show that E(TJ−1 + c) = (eλc − 1)/λ.
Solution: First, we have

E(TJ−1 + c) = E(TJ − tJ + c) = E(TJ −
J

λ
+
J

λ
− tJ + c) = E(TJ −

J

λ
) +

EJ
λ
− E(tJ) + c .

We calculate the three expectations in the r.h.s. above respectively. It is easy to see that J has
geometric distributuion with parameter p = P(t1 > c) = e−λc. Then EJ = ecλ. Also,

E(tJ) = E(t1|t1 > c) = c+ E(t1) = c+
1
λ
.

To calculate E(TJ − J
λ ), since we have shown that Xn = Tn− n

λ is a martingale and J is a stopping
time, by the fact that EJ <∞ and that

E
(
|Xn+1 −Xn|

∣∣∣X1, . . . , Xn

)
= E

(∣∣∣∣t1 − 1
λ

∣∣∣∣ ∣∣∣X1, . . . , Xn

)
≤ E(t1) +

1
λ
<∞ ,

we apply the martingale stopping theorem to obtain

E(TJ −
J

λ
) = E(T1 −

1
λ

) = 0 .

Plugging in, we have

E(TJ−1 + c) = 0 +
eλc

λ
− c− 1

λ
+ c =

eλc − 1
λ

.

3. We study a queue with impatient customers. Customers arrive at a single server as a Poisson
process with rate λ and require an exponential amount of service with rate µ. customers waiting
in line are impatient and if they are not in service they will leave at rate δ independent of their
position in the queue. Show that for any δ > 0 the system has a stationary distribution, and find
an expression for this distribution.
Solution: Let X(t) denote the process. It has states {0, 1, 2, . . . }. We can write the transition
matrix as follows.

qi,i+1 = λ

qi,i−1 = µ+ (i− 1)δ, i ≥ 1
qi,k = 0, otherwise

It is clear that we have a death and birth process. THen, the stationary distributuion Pi satisfies:
∞∑
i=0

Pi = 1 and Piqi,i+1 = Pi+1qi+1,i . (2)
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By solving (2), we have

Pi =
λi∏i−1

j=0(µ+ jδ)
P0 , P0 =

(
1 +

∞∑
i=1

λi∏i−1
j=0(µ+ jδ)

)−1

.

To see the existence of stationary distribution, one can check that P0 > 0. Indeed, since λ > 0,
there exists J ∈ N such that µ+ Jδ > λ. Then, it follows that

∞∑
i=1

λi∏i−1
j=0(µ+ jδ)

<
J−1∑
i=1

λi∏i−1
j=0(µ+ jδ)

+
∞∑
i=J

(
λ

µ+ Jδ

)i
<∞ .

4. A cocaine dealer is standing on a street corner. Customers arrive at times of a Poisson process
with rate λ. The customer and the dealer then disappear from the street for an amount of time
with distribution G while the transaction is completed. Customers that arrive during this time go
away never to return.
(a) [5 points] At what rate does the dealer make sales? Explain your reasoning.
Solution: We can define a renewal process, each cycle ending when a transaction is finished. Let
Xi denote the length of cycle i. Let T be a random variable with distributuion G. Then,

E(Xi) =
1
λ

+ E(T ) .

The long-run rate of transactions is then 1/E[X1].
(b) [5 points] What fraction of customers are lost? Explain your reasoning.

Solution: The fraction of customers that are lost is the stationary distribution of state 1, i.e., E(T )
1
λ
+E(T )

.

5. Let {Z(t), 0 ≤ t ≤ 1} be a Brownian bridge, i.e., a Gaussian diffusion with E[Z(t)] = 0 and
Cov(Z(s), Z(t)) = s ∧ t − st. Define X(t) = (1 + t)Z(t/(1 + t)). Show that {X(t), t ≥ 0} is a
standard Brownian motion.
Solution: Since Z(t) is a Brownian bridge, it is a Gaussian diffusion. Then X(t) is a Gaussian
diffusion. Now we prove

E(X(t)) = 0 and Cov(X(s), X(t)) = s ∧ t− st .

First,

E(X(t)) = (1 + t)E
(
Z

(
t

1 + t

))
= (1 + t)E

(
B

(
t

1 + t

)
− t

1 + t
B(1)

)
= (1 + t)

(
0− t

1 + t

)
= 0 .

Next, by the fact that Z(t) is a Brownian bridge,

Cov(X(s), X(t)) = Cov
(

(1 + s)Z
(

s

1 + s

)
, (1 + t)Z

(
t

1 + t

))
= (1 + s)(1 + t)

s

1 + s
∧ t

1 + t
− st

(1 + s)(1 + t)
= s(1 + t) ∧ t(1 + s)− st = s ∧ t− st .

We have thus proved that X(t) is a standard Brownian motion.
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