
Statistics 620
Final exam, Winter 2017

1. Each of n statistics PhD students is carrying out an independent computationally intensive
research project. However, the students have access to only a single shared computer. Each student
works for an exponentially distributed time with mean 1/λ, after which time they submit job on
the computer that requires an exponentially distributed amount of computer time with mean 1/µ.
Only one job can run at a time on the computer, and jobs run in the order they are submitted.
The students do no work after submitting a job until they get the results back from the computer,
at which point they start another similarly distributed cycle of work and computation. Find the
long run probability that exactly k of the n students are working at any given time.

Solution: Let X(t) be the number of students working at time t. We have νk,k+1 = µ for k =
0, . . . , n−1, since if there is at least one job running then jobs complete at rate µ. Also, νk,k−1 = λk,
for k = 1, . . . , n. This is a birth-death process, therefore time-reversible. The long run probability
of k students working is equal to the stationary distribution, Pk, which satisfies the detailed balance
equations,

µPk−1 = λkPkk, (1)

so

Pk =
µk

λkk!
P0 =

µk

λkk!

{
n∑

`=0

µ`

λ``!

}−1
(2)

2. We study a simple model for public health control of an Ebola outbreak. One infected individual
arrives in New York City at day zero of the outbreak. Each subsequent day, the individual either
infects a new person (with probability p) or the individual becomes symptomatic and is discovered
by public health officials (with probability 1− p). Each newly infected individual behaves like the
first. Find the cumulative distribution function of the time until the outbreak is discovered.

Solution: Let Xn be the number of undiscovered infected individuals on day n. Let D be the day
of discovery of the outbreak. Conditional on D > n, Xn = 2n. So, D > n is exactly the event that
all
∑n

k=0 2k = 2n+1− 1 infected person days at time k ≤ n lead to infections not discoveries. Thus,

P[D > n] = p2
n−1−1 (3)

and D has c.d.f
FD(n) = P[D ≤ n] = 1− p2n−1−1. (4)

3. Let S and T be stopping times for a sequence of random variables, X1, X2, . . . . Show that the
following are all stopping times:

(a) The minimum, U = S ∧ T .

(b) The maximum, V = S ∨ T .

(c) The sum, W = S + T .

Solution: The definition of T being a stopping time for X0, X1, X2, . . . is that {T = n} is determined
by X1, X2, . . . , Xn for all n. This is equivalent to {T > n} being determined by X1, X2, . . . , Xn for
all n, or to {T ≤ n} being determined by X1, X2, . . . , Xn for all n.
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(a) We write {U > n} = {S > n} ∩ {T > n} and notice that both {S > n} and {T > n} are
determined by X1, X2, . . . , Xn implying that their intersection is also.

(b) Similarly, {V ≤ n} = {S ≤ n} ∩ {T ≤ n} and both {S > n} and {T > n} are determined by
X1, X2, . . . , Xn.

(c) {W = n} =
⋃n

k=0{S = k} ∩ {T = n− k} and, by the definition of stopping times, all terms in
the union are determined by X1, . . . , Xn.

4. We use martingales to study a simple investment management model. Let Zn be wealth at time
n. At each timepoint n ≥ 1, we allocate a fraction F of our wealth to a risky investment, modeled
as

Zn =

{
Zn−1(1 + F ) with probability p,
Zn−1(1− F ) with probability 1− p,

for 1/2 < p < 1. An investment strategy involves determining F as a function of Z0, . . . , Zn−1.
We want to choose a stragegy to maximize the expected interest rate, E[log(ZN/Z0)] where N is a
fixed integer time and Z0 is a known constant.

(a) Find the investment strategy optimizing E[log(Zn/Zn−1)|Zn−1].

(b) Argue that logZn − αn is a supermartingale for any investment strategy, where α = p log p +
(1 − p) log(1 − p) + log2. Use part (a) to show that there is a strategy for which logZn − nα is a
martingale.

(c) Explain how (a) and (b) determine a strategy optimizing E[log(ZN/Z0)].

Solution:

E[logZn|Zn−1, F ] = logZn−1 + p log(1 + F ) + (1− p) log(1− F ). (5)

Setting the derivative with respect to F equal to zero gives,

p

1 + F
− (1− p)

1− F
= 0,

F = 2p− 1. (6)

Thus, investing a fraction 2p − 1 gives the best expected interest rate over one time step. In
principle, F could depend on Z1, . . . , Zn−1 but the optimal choice doesn’t. For this choice, (5)
gives

E[logZn|Zn−1, F ] = logZn−1 + p log(2p) + (1− p) log(2(1− p))
= logZn−1 + p log(p) + (1− p) log(1− p) + log 2

= logZn−1 + α. (7)

This demonstrates that {logZn − αn} is a martingale for this optimal strategy. For any other
strategy, E[logZn|Zn−1, F ] cannot be greater so {logZn − αn} is a supermartingale. A super-
martingale has non-increasing expectation, so E[log(ZN/Z0)] is maximized for the strategy (6) that
has {logZn − αn} a martingale, i.e., E[log(ZN/Z0)] = Nα.

5. Let {Bk(t), 1 ≤ k ≤ n, t ≥ 0} be a collection of n independent standard Brownian motions. Let
X(t) =

∑n
k=1[Bk(t)]2.
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(a) Find limh→0 h
−1E[X(t+ h)−X(t)|X(t) = x] and limh→0 h

−1Var[X(t+ h)−X(t)|X(t) = x].

(b) Argue that {X(t)} is a diffusion process and write down the stochastic differential equation
that it solves.

(c) Let At be the event that X(s) hits zero for some s ≥ t. What do you think limt→∞ P(At) is,
for each value of n? You may use results we established in class for the random walk to guide your
reasoning.

Solution: (a) Define ∆ = X(t+ δ)−X(t) and ∆k = Bk(t+ δ)−Bk(t). We calculate,

∆ =

n∑
k=1

Bk(t+ δ)2 −Bk(t)2

=

n∑
k=1

{[
Bk(t) + ∆k

]2 −Bk(t)2
}

=

n∑
k=1

∆2
k + 2

n∑
k=1

∆kBk(t).

Since ∆k ∼ N [0, δ] and {∆k} and {Bk(t)} are independent, we have

E[∆|B1(t), . . . , Bk(t)] = nδ (8)

Var[∆|B1(t), . . . , Bk(t)] =
n∑

k=1

[
Var(∆2

k) + 4Var
(
∆kBk(t)|Bk(t)

)
+ 4Cov

(
∆2

k,∆kBk(t)|Bk(t)
)]

= 2δ2n+ 4δ
n∑

k=1

B2
k(t). (9)

Now, using the tower property, we obtain

E[∆|X(t)] = nδ (10)

Var[∆|X(t)] = 2δ2n+ 4δX(t). (11)

Hence, limh→0 h
−1E[X(t + h) − X(t)|X(t) = x] = n and limh→0 h

−1Var[X(t + h) − X(t)|X(t) =
x] = 4x.

(b) {X(t)} evidently has continuous sample paths, but it is not immediately evident that it has the
Markov property. Indeed, usually a non-invertible function of diffusions is non-Markovian. Here,
it happens that the infinitesimal mean and variance depend only on the current state, so we have
the Markovian property. Thus, {X(t)} is a diffusion.

(c) The event {X(s) = 0} is equivalent to the event B1(s) = B2(s) = · · · = Bn(s) = 0, which is
a return to the origin for an n-dimensional Brownian motion. We know from class and homework
that a simple random walk in Rd is null recurrent when d ≤ 2 and transient when d ≥ 3. Since
Brownian motion can be constructed as a limit of simple random walks, we may expect that

lim
t→∞

P(At) =

{
1 when n = 1, 2
0 when n ≥ 3

(12)
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