
Statistics 620
Midterm exam, Fall 2013

1. Richard catches trout according to a Poisson process with rate 0.1 minute−1. Suppose that the
trout weigh an average of 4 pounds with a standard deviation of 2 pounds. Find expressions for
the mean and standard deviation of the total weight of fish he catches in two hours.
Solution: Let N(t) count the number of fish caught by time t, and let {Xi, i = 1, 2, . . . } be a
sequence of random variables giving the weight of each fish. We assume that these weights are iid
and independent of N(t). Let N = N(2) count the fish caught in 2 hours. Let W =

∑N
i=1 Xi.

Then,
E[W ] = E

{
E[W |N ]

}
= E[N ]E[X1]

V ar(W ) = E[V ar(W |N)] + V ar(E[W |N ])
= E[N V ar(X1)] + V ar(N E[X1])
= E[N ]V ar(X1) + (E[X1])2V ar(N).

Here, E[N ] = 120 × 0.1 = 12 and V ar(N) = E[N ] = 12. So, E[W ] = 12 × 4 = 48 pounds,
sd(W ) =

√
12× 4 + 12× 42 = 15.5 pounds.

2. A light bulb has a lifetime that is exponential with a mean of µ = 200 days. When it burns
out, a janitor replaces it immediately. In addition, there is a handyman who comes, on average,
h = 3 times per year according to a Poisson process and replaces the lightbulb as “preventative
maintenance.”
(a) Find the average time between bulb replacements, in terms of µ and h.
(b) In the long run, what fraction of the replacements are due to failure? Your answer should be
an expression in terms of µ and h.
Solution: (a) Let N1(t) count burnout events, and N2(t) count handyman replacements. Then
N3(t) = N1(t)+N2(t) is a Poisson process with rate 1

µ + h
365 = 0.0132 day−1 (assuming independence

of N1(t) and N2(t)). Therefore, average time between replacements is

1
1/µ + h/365

=
365µ

365 + µh
= 75.6 days.

(b)

lim
t→∞

N1(t)
N3(t)

= lim
t→∞

N1(t)
t

/
lim
t→∞

N3(t)
t

=
1
µ
× 365µ

365 + µh

=
365

365 + µh
= 0.38 w.p.1

3. Let {N(t), t ≥ 0} be a renewal process, with corresponding arrival times {Sn} and inter-arrival
times Xn = Sn − Sn−1 with E[Xn] = µ. Show that limt→∞N(t)/t = 1/µ, with probability one.
Note: you can use without proof the strong law of large numbers for Sn.
Solution: This is in the notes.
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4. Consider the following approach to shuffling a deck of n cards. Starting with any initial ordering
of the cards, one of the numbers 1, 2, . . . , 52 is chosen at random and with equal probability. If
number i is chosen, we move the card from position i in the deck to the top, i.e. to position 1. We
repeatedly perform the same operation. Show that, in the limit, the deck is perfectly shuffled in
the sense that the resultant ordering is equally likely to be any of the n! possible orderings.
Solution: Let Xn denote the ordering of the cards after the nth operation. Xn is a Markov Chain
whose state space is orderings of 1, . . . , 52. Note that Xn is irreducible (since in 52 operations we
can reach any order) and aperiodic (since P[Xn = Xn−1] > 0). Then Xn has a unique stationary
distribution which is also the limiting distinction. Let π be the uniform distribution on orderings,
so πi = 1/52!. Note that the transition matrix of Xn is

Pij =
{
{1/52 if there is a card that can be placed on top to get j from i
0 else

Then
∑

i πiPij =
∑

i:Pij>0
1

52! ×
1
52 = 52× 1

52! ×
1
52 = 1

52! = πj . This gives the uniform distribution
as the limiting distribution.
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