Homework 10 (Stats 620, Winter 2017)

Due Tuesday April 18, in class
Questions are derived from problems in Stochastic Processes by S. Ross.

1. A stochastic process {X(t),t > 0} is said to be stationary if X(t1), ..., X (t,) has the same
joint distribution as X (t; + a), ..., X(t, + a) for all n,a,ty,...,t,.

(a) Prove that a necessary and sufficient condition for a Gaussian process to be stationary is
that Cov((X(s), X(¢)) depends only on ¢t — s, s < t, and E[X(t)] = c.

(b) Let {X(t),t > 0} be Brownian motion and define

V(t) = e 2 X (ae).
Show that {V'(t),t > 0} is a stationary Gaussian process. It is called the Ornstein-Uhlenbeck
process.

Solution:

If the Gaussian process is stationary then for t > s

X(t) \ d( X(t—s)
(x9)# (507
Thus E[X (s)] = E[X(0)] for all s and Cov(X(t), X(s)) = Cov(X(t —s),X(0)) for all t < s.

Now, assume E[X (¢)] = ¢ and Cov(X (t),X(s)) = h(t — s). For any T = (t1,--- ,t) define
vector Xp = (X(t1),--+ , X(t)). Let T = (t1—a,--- ,tp—a). If {X(¢)} is a Gaussian process
then both X7 and X7 are multivariate normal and it suffices to show that they have the same
mean and covariance. This follows directly from the fact that they have the same element-
wise mean ¢ and the equal pair-wise covariances, Cov(X(t; — a), X (t; —a)) = h(t; — t;) =
Cov(X (t:), X (1))

(b) Since all finite dimensional distributions of {V'(¢)} are Normal, it is a Gaussian process.
Thus from part (a) it suffices to show the following:

(a) E[V(t)] = e “/?E[X (ae®)] = 0. Thus E[V (¢)] is constant.
(b) For s <t,

Cov(V(s),V(t)) = €_a(t+5)/2C0V(X(oaeo‘s),X(aeat)) — o alt+8)/2 pas _ o p—a(t—s)/2

which depends only on ¢ — s.

2. Let X (t) be standard Brownian motion. Find the distribution of:
(a) [X(1)].
(b) | ming<s<t X (s)]
(c) maxp<s<t X(s) — X (t)



Hint: all three parts have the same answer.
Solution:
(a)Let Y(t) = |X(t)]. Fory >0

Fy(y) = P(X(@) <vy)

| 22 \/5 v/VE u?
= P(-y<X(t)<y)=2 R P —= ) du.
(—y < X(t) <vy) /0 5 exp( zt)da: 7T/o exp( 2>du

(b) Let Y (¢) = | minp<s<¢ X (s)]. For y >0

Fy(y) = PY(t) <y) =P(min X(s) > -y)

-0 [ el 5)
. ﬁ /Owexp< ).

(c) Let Y = maxp<s<¢ X(s) and X = X(t) then
Flz,y) =P(X <z,Y<y)=PX <z)-PY >y, X <uzx).

Let & and ¢ be the distribution and density functions respectively of a standard normal
random variable. Using results derived in class,

Fla,y) = ® (\2) —® <x _ﬁQy) y>a,y>0.

0? 2, (r—2y

Since the Jacobian for the transformation V =Y — X, W =Y is of unit modulus, the density
of (V,W) is given by

Thus,

o) =20 (V) oz, )
Thus
PY-X<y) = PV<y= // < )dwdv

_ /Oyjﬁgﬁ)dv (2)
_ \/z/oy/ exp<—u2)du.



3. Let M(t) = maxo<s<¢ X (s) where X (t) is standard Brownian motion. Show that

P{M(t)>a| M@t) =XH)}=e "2 a>0.

Hint: One approach is outlined below. There may be other ways.

(i) Differentiate the expression
& 1 2
P(M(t) >y, B(t) < z) = e W gy
M) > B0 <a)= [ o

to find the joint density of M (t) and B(t).

(ii) Transform variables to find the joint density of M (t) and M (t)— B(t). This involves using
the Jacobian formula (e.g. Ross, A First Course in Probability, 6th edition, Section 6.7): If
X1 and X2 have joint density leXQ, Y1 = gl(Xl,Xg), Y2 = gz(Xl,XQ), X1 = hl(}/l,YQ) and
Xo = ha(Y1,Y3), then (supposing suitable regularity)

Ixix, (R1(y1,92), h2(y1, y2))
| T (h1(y1,y2), ha(y1, y2))]

where J is the matrix determinant (Jacobian) given by

ive (Y1, y2) =

891/8$1 6_91/8.712

e, e2) = 0g2/0x1 0g2/0x2

(iii) Find the conditional density of M (t) given M (t) — B(t) = 0.
Solution:
V = max X(s) — X(¢t) and W = max X(s).
0<s<t 0<s<t

The joint density of (V, W) is given by equation (1), and the marginal density of V follows

from equation (2):
wor = [ ()= e ()

The conditional density of W given V =0 is f(0,w)/ fy(0), which gives

CfOw) | daVD)

o Jfv(0) ¢(0)

P(W < a|]V =0)
Thus
a2
PW >a|lV=0) = 1-P(W<aqa|lV=0)=¢e 2.

4. For a Brownian motion process with drift coefficient u, let

f(z) = E [time to hit either A or — B | Xo = z],



where A >0,B >0,—-B <z < A.
(a) Derive a differential equation for f(z).
(b) Solve this equation.

(c) Use a limiting random walk argument (see Problem 4.22 of Chapter 4) to verify the
solution in part (b).

Solution:

(a) Note that the conditional distribution of process {Y(t) = X(t+ h) : t > 0| X (h) = x} is
the same as distribution of {X(¢) : ¢ > 0/X(0) = z}. Thus if T'(x) =time to hit either A or
—B given X (0) = x, then

T(z)=h+T(X(h))+o(h).

Thus for Y = X (h) — X(0),
f(x) =E[T(x)] = h+E[f(x+Y)] +o(h).
From the Taylor series expansion
f(@) = h+E[f(z) + f(2)Y + f(2)Y?/2+ -]+ o(h),

it follows that,
h+ f'(@)ph+ f"(z)(u?h* + h) /2 + o(h) = 0.

Dividing the equation above by h on both side, we obtain
L+ f(@)p+ (@) (u*h +1)/2 = o(h) /h,

That is, letting A — 0,
L+ fl(@)p+ f'(x)/2=0. (3)
(b) Let v =1+ f/(x)u. Equation (3) becomes
1 dv
iy
+ 2u dx
Thus v = c1e” 2 = 1 + f’(z)u. This gives

cre 2T _

fx) = p

Finally

—2ux _ 1
(qe—x>+@. (4)
Using the boundary conditions f(A) = 0 = f(—B), equation (4) gives

e 2Hr _ g—2uA A—zx

fo) = A (e )+ )




(c) From the class notes for ' = T'(0),

] = tim BT

n—00 n

) 1 APjy — B(1 — Py)
= lim

w500 1 E[(Y: + i/ /) [/
1 APy — B(1 - Py)

= lim .
n—oo N M/n
Here 0B
1 __ pUn
Pa ¢

S w—

where 0,, satisfies
E[eé’n(Yﬁu/\/ﬁ)/x/ﬁ] —1.

Thus
]E[eenyl/‘/ﬁ] = e Ont/n

Since Y] is standard normal. By the moment generating function

2 —
¢03/(n) _ g=tun/m

it follows that 6,, = —2p. Substituting in (6), we obtain

1 — e?B

Pir~ ——F—=.
A e—2nA _ o2uB

Thus
E[T]

_A+B ([ 1-—e*P B
~ i e—2uA _ o2uB 0

W
which is the same as f(0) obtained earlier.

Recommended reading:
Sections 8.3, 8.4, 8.5.

Supplementary exercises: 8.3, 8.4, 8.6, 8.16
Optional, but recommended. Do not turn in solutions—they are in the back of the book.



