Homework 10 (Stats 620, Winter 2017)

Due Tuesday April 18, in class
Questions are derived from problems in Stochastic Processes by S. Ross.

1. A stochastic process $\{X(t), t \geq 0\}$ is said to be stationary if $X\left(t_{1}\right), \ldots, X\left(t_{n}\right)$ has the same joint distribution as $X\left(t_{1}+a\right), \ldots, X\left(t_{n}+a\right)$ for all $n, a, t_{1}, \ldots, t_{n}$.
(a) Prove that a necessary and sufficient condition for a Gaussian process to be stationary is that $\operatorname{Cov}((X(s), X(t))$ depends only on $t-s, s \leq t$, and $\mathbb{E}[X(t)]=c$.
(b) Let $\{X(t), t \geq 0\}$ be Brownian motion and define

$$
V(t)=e^{-\alpha t / 2} X\left(\alpha e^{\alpha t}\right)
$$

Show that $\{V(t), t \geq 0\}$ is a stationary Gaussian process. It is called the Ornstein-Uhlenbeck process.

Solution:

If the Gaussian process is stationary then for $t>s$

$$
\binom{X(t)}{X(s)} \stackrel{d}{=}\binom{X(t-s)}{X(0)}
$$

Thus $\mathbb{E}[X(s)]=\mathbb{E}[X(0)]$ for all s and $\operatorname{Cov}(X(t), X(s))=\operatorname{Cov}(X(t-s), X(0))$ for all $t<s$.
Now, assume $\mathbb{E}[X(t)]=c$ and $\operatorname{Cov}(X(t), X(s))=h(t-s)$. For any $T=\left(t_{1}, \cdots, t_{k}\right)$ define vector $X_{T} \equiv\left(X\left(t_{1}\right), \cdots, X\left(t_{k}\right)\right)^{\prime}$. Let $\tilde{T}=\left(t_{1}-a, \cdots, t_{k}-a\right)$. If $\{X(t)\}$ is a Gaussian process then both X_{T} and $X_{\tilde{T}}$ are multivariate normal and it suffices to show that they have the same mean and covariance. This follows directly from the fact that they have the same elementwise mean c and the equal pair-wise covariances, $\operatorname{Cov}\left(X\left(t_{i}-a\right), X\left(t_{j}-a\right)\right)=h\left(t_{i}-t_{j}\right)=$ $\operatorname{Cov}\left(X\left(t_{i}\right), X\left(t_{j}\right)\right)$.
(b) Since all finite dimensional distributions of $\{V(t)\}$ are Normal, it is a Gaussian process. Thus from part (a) it suffices to show the following:
(a) $\mathbb{E}[V(t)]=e^{-\alpha t / 2} \mathbb{E}\left[X\left(\alpha e^{\alpha t}\right)\right]=0$. Thus $\mathbb{E}[V(t)]$ is constant.
(b) For $s \leq t$,

$$
\operatorname{Cov}(V(s), V(t))=e^{-\alpha(t+s) / 2} \operatorname{Cov}\left(X\left(\alpha e^{\alpha s}\right), X\left(\alpha e^{\alpha t}\right)\right)=e^{-\alpha(t+s) / 2} \alpha e^{\alpha s}=\alpha e^{-\alpha(t-s) / 2},
$$

which depends only on $t-s$.
2. Let $X(t)$ be standard Brownian motion. Find the distribution of:
(a) $|X(t)|$.
(b) $\left|\min _{0 \leq s \leq t} X(s)\right|$
(c) $\max _{0 \leq s \leq t} X(s)-X(t)$

Hint: all three parts have the same answer.
Solution:
(a)Let $Y(t)=|X(t)|$. For $y \geq 0$

$$
\begin{aligned}
F_{Y}(y) & =\mathbb{P}(|X(t)| \leq y) \\
& =\mathbb{P}(-y \leq X(t) \leq y)=2 \int_{0}^{y} \frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{x^{2}}{2 t}\right) \mathrm{d} x=\sqrt{\frac{2}{\pi}} \int_{0}^{y / \sqrt{t}} \exp \left(-\frac{u^{2}}{2}\right) \mathrm{d} u
\end{aligned}
$$

(b) Let $Y(t)=\left|\min _{0 \leq s \leq t} X(s)\right|$. For $y \geq 0$

$$
\begin{aligned}
F_{Y}(y) & =\mathbb{P}(Y(t) \leq y)=\mathbb{P}\left(\min _{0 \leq s \leq t} X(s) \geq-y\right) \\
& =\mathbb{P}\left(T_{-y} \geq t\right)=1-\int_{y / \sqrt{t}}^{\infty} \sqrt{\frac{2}{\pi}} \exp \left(-\frac{u^{2}}{2}\right) \mathrm{d} u \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{y / \sqrt{t}} \exp \left(-\frac{u^{2}}{2}\right) \mathrm{d} u
\end{aligned}
$$

(c) Let $Y=\max _{0 \leq s \leq t} X(s)$ and $X=X(t)$ then

$$
F(x, y) \equiv \mathbb{P}(X \leq x, Y \leq y)=\mathbb{P}(X \leq x)-\mathbb{P}(Y>y, X \leq x)
$$

Let Φ and ϕ be the distribution and density functions respectively of a standard normal random variable. Using results derived in class,

$$
F(x, y)=\Phi\left(\frac{x}{\sqrt{t}}\right)-\Phi\left(\frac{x-2 y}{\sqrt{t}}\right), y \geq x, y>0
$$

Thus,

$$
\frac{\partial^{2}}{\partial x \partial y} F(x, y)=\frac{2}{t} \phi^{\prime}\left(\frac{x-2 y}{\sqrt{t}}\right)
$$

Since the Jacobian for the transformation $V=Y-X, W=Y$ is of unit modulus, the density of (V, W) is given by

$$
\begin{equation*}
f(v, w)=\frac{2}{t} \phi^{\prime}\left(\frac{v-w}{\sqrt{t}}\right), v, w \geq 0 \tag{1}
\end{equation*}
$$

Thus

$$
\begin{align*}
\mathbb{P}(Y-X \leq y) & =\mathbb{P}(V \leq y)=\int_{0}^{y} \int_{0}^{\infty} \frac{2}{t} \phi^{\prime}\left(\frac{v-w}{\sqrt{t}}\right) \mathrm{d} w \mathrm{~d} v \\
& =\int_{0}^{y} \frac{2}{\sqrt{t}} \phi\left(\frac{v}{\sqrt{t}}\right) \mathrm{d} v \tag{2}\\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{y / \sqrt{t}} \exp \left(-\frac{u^{2}}{2}\right) \mathrm{d} u
\end{align*}
$$

3. Let $M(t)=\max _{0 \leq s \leq t} X(s)$ where $X(t)$ is standard Brownian motion. Show that

$$
\mathbb{P}\{M(t)>a \mid M(t)=X(t)\}=e^{-a^{2} / 2 t}, \quad a>0 .
$$

Hint: One approach is outlined below. There may be other ways.
(i) Differentiate the expression

$$
P(M(t)>y, B(t)<x)=\int_{2 y-x}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-u^{2} / 2 t} d u
$$

to find the joint density of $M(t)$ and $B(t)$.
(ii) Transform variables to find the joint density of $M(t)$ and $M(t)-B(t)$. This involves using the Jacobian formula (e.g. Ross, A First Course in Probability, 6th edition, Section 6.7): If X_{1} and X_{2} have joint density $f_{X_{1} X_{2}}, Y_{1}=g_{1}\left(X_{1}, X_{2}\right), Y_{2}=g_{2}\left(X_{1}, X_{2}\right), X_{1}=h_{1}\left(Y_{1}, Y_{2}\right)$ and $X_{2}=h_{2}\left(Y_{1}, Y_{2}\right)$, then (supposing suitable regularity)

$$
f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)=\frac{f_{X_{1} X_{2}}\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right)}{\left|J\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right)\right|}
$$

where J is the matrix determinant (Jacobian) given by

$$
J\left(x_{1}, x_{2}\right)=\left|\begin{array}{ll}
\partial g_{1} / \partial x_{1} & \partial g_{1} / \partial x_{2} \\
\partial g_{2} / \partial x_{1} & \partial g_{2} / \partial x_{2}
\end{array}\right|
$$

(iii) Find the conditional density of $M(t)$ given $M(t)-B(t)=0$.

Solution:

$$
V=\max _{0 \leq s \leq t} X(s)-X(t) \quad \text { and } \quad W=\max _{0 \leq s \leq t} X(s) .
$$

The joint density of (V, W) is given by equation (1), and the marginal density of V follows from equation (2):

$$
f_{V}(v)=\int_{0}^{\infty} \frac{2}{t} \phi^{\prime}\left(\frac{v-w}{\sqrt{t}}\right) \mathrm{d} w=\frac{2}{\sqrt{t}} \phi\left(\frac{v}{\sqrt{t}}\right) .
$$

The conditional density of W given $V=0$ is $f(0, w) / f_{V}(0)$, which gives

$$
\mathbb{P}(W \leq a \mid V=0)=\int_{0}^{a} \frac{f(0, w)}{f_{V}(0)} \mathrm{d} w=1-\frac{\phi(-a / \sqrt{t})}{\phi(0)} .
$$

Thus

$$
\mathbb{P}(W>a \mid V=0)=1-\mathbb{P}(W \leq a \mid V=0)=e^{-\frac{a^{2}}{2 t}}
$$

4. For a Brownian motion process with drift coefficient μ, let

$$
f(x)=\mathbb{E}\left[\text { time to hit either } A \text { or }-B \mid X_{0}=x\right]
$$

where $A>0, B>0,-B<x<A$.
(a) Derive a differential equation for $f(x)$.
(b) Solve this equation.
(c) Use a limiting random walk argument (see Problem 4.22 of Chapter 4) to verify the solution in part (b).
Solution:
(a) Note that the conditional distribution of process $\{Y(t)=X(t+h): t \geq 0 \mid X(h)=x\}$ is the same as distribution of $\{X(t): t \geq 0 \mid X(0)=x\}$. Thus if $T(x)=$ time to hit either A or $-B$ given $X(0)=x$, then

$$
T(x)=h+T(X(h))+o(h)
$$

Thus for $Y=X(h)-X(0)$,

$$
f(x) \equiv \mathbb{E}[T(x)]=h+\mathbb{E}[f(x+Y)]+o(h)
$$

From the Taylor series expansion

$$
f(x)=h+\mathbb{E}\left[f(x)+f^{\prime}(x) Y+f^{\prime}(x) Y^{2} / 2+\cdots\right]+o(h)
$$

it follows that,

$$
h+f^{\prime}(x) \mu h+f^{\prime \prime}(x)\left(\mu^{2} h^{2}+h\right) / 2+o(h)=0
$$

Dividing the equation above by h on both side, we obtain

$$
1+f^{\prime}(x) \mu+f^{\prime \prime}(x)\left(\mu^{2} h+1\right) / 2=o(h) / h
$$

That is, letting $h \rightarrow 0$,

$$
\begin{equation*}
1+f^{\prime}(x) \mu+f^{\prime \prime}(x) / 2=0 \tag{3}
\end{equation*}
$$

(b) Let $v=1+f^{\prime}(x) \mu$. Equation (3) becomes

$$
v+\frac{1}{2 \mu} \frac{\mathrm{~d} v}{\mathrm{~d} x}=0
$$

Thus $v=c_{1} e^{-2 \mu x}=1+f^{\prime}(x) \mu$. This gives

$$
f^{\prime}(x)=\frac{c_{1} e^{-2 \mu x}-1}{\mu}
$$

Finally

$$
\begin{equation*}
f(x)=\frac{1}{\mu}\left(\frac{c_{1} e^{-2 \mu x}-1}{-2 \mu}-x\right)+c_{2} . \tag{4}
\end{equation*}
$$

Using the boundary conditions $f(A)=0=f(-B)$, equation (4) gives

$$
\begin{equation*}
f(x)=\frac{A+B}{\mu}\left(\frac{e^{-2 \mu x}-e^{-2 \mu A}}{e^{-2 \mu A}-e^{2 \mu B}}\right)+\frac{A-x}{\mu} . \tag{5}
\end{equation*}
$$

(c) From the class notes for $T=T(0)$,

$$
\begin{aligned}
\mathbb{E}[T] & =\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[T^{(n)}\right]}{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \frac{A P_{A}-B\left(1-P_{A}\right)}{\mathbb{E}\left[\left(Y_{1}+\mu / \sqrt{n}\right) / \sqrt{n}\right]} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \frac{A P_{A}-B\left(1-P_{A}\right)}{\mu / n}
\end{aligned}
$$

Here

$$
\begin{equation*}
P_{A} \approx \frac{1-e^{-\theta_{n} B}}{e^{\theta_{n} A}-e^{-\theta_{n} B}} \tag{6}
\end{equation*}
$$

where θ_{n} satisfies

$$
\mathbb{E}\left[e^{\theta_{n}\left(Y_{1}+\mu / \sqrt{n}\right) / \sqrt{n}}\right]=1
$$

Thus

$$
\mathbb{E}\left[e^{\theta_{n} Y_{1} / \sqrt{n}}\right]=e^{-\theta_{n} \mu / n}
$$

Since Y_{1} is standard normal. By the moment generating function

$$
e^{\theta_{n}^{2} /(2 n)}=e^{-\theta_{n} \mu / n}
$$

it follows that $\theta_{n}=-2 \mu$. Substituting in (6), we obtain

$$
P_{A} \approx \frac{1-e^{2 \mu B}}{e^{-2 \mu A}-e^{2 \mu B}}
$$

Thus

$$
\mathbb{E}[T] \approx \frac{A+B}{\mu}\left(\frac{1-e^{2 \mu B}}{e^{-2 \mu A}-e^{2 \mu B}}\right)-\frac{B}{\mu}
$$

which is the same as $f(0)$ obtained earlier.

Recommended reading:

Sections 8.3, 8.4, 8.5.
Supplementary exercises: $8.3,8.4,8.6,8.16$
Optional, but recommended. Do not turn in solutions-they are in the back of the book.

