
Homework 2 (Stats 620, Winter 2017)

Due Tuesday January 31, in class
Questions are derived from problems in Stochastic Processes by S. Ross.

1. Let {N(t), t ≥ 0} be a Poisson process with rate λ. Calculate E
[
N(t)N(t+ s)

]
.

Comment: Please state carefully where you make use of basic properties of Poisson processes,
such as stationary, independent increments.

Solution: Note that N(t)N(t+ s) = N(t)[N(t) +N(t+ s)−N(t)]. Thus

E[N(t)N(t+ s)] = E[(N(t))2] + E[N(t)(N(t+ s)−N(t))] = E[(N(t))2] + E[N(t)]E[N(s)]

where we used the property of stationary and independent increments. Since for any t > 0,
N(t) ∼Poisson(λt), whence E[N(t)] = λt, Var[N(t)] = λt. It follows that

E[N(t)N(t+ s)] = λt+ (λt)2 + λsλt .

2. Suppose that {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are independent Poisson processes with rates
λ1 and λ2. Show that {N1(t)+N2(t), t ≥ 0} is a Poisson process with rate λ1+λ2. Also, show
that the probability that the first event of the combined process comes from {N1(t), t ≥ 0} is
λ1/(λ1 + λ2), independently of the time of the event.

Solution: We check that N(t) = N1(t) +N2(t) satisfies Definition 1.
(i) N(t) = 0.
(ii) Note that N1(t) and N2 have independent increments. Moreover, N1(t) and N2(t) are
independent.
(iii) Indeed, for any t, s > 0,

P(N(t+ s)−N(t) = n) =
n∑
k=0

P(N1(t+ s)−N1(t) = n− k|N2(t+ s)−N2(t) = k)

×P(N2(t+ s)−N2(t) = k)

=
n∑
k=0

(λ1s)
n−k

(n− k)!
exp{−λ1s}

(λ2s)
k

k!
exp{−λ2s}

= exp{−(λ1 + λ2)s}
n∑
k=0

(λ1s)
n−k(λ2s)

k

(n− k)!k!

=
((λ1 + λ2)s)

n

n!
exp{−(λ1 + λ2)t} .

Now to show that the probability of the first arrival is from N1(t). Let X be the first arrival
time for N(t), and X1, X2 the corresponding times for N1(t) and N2(t).
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One way to do is, observing that, X ∼ Exponential(λ1 + λ2),

P(first event from N1(t)|X = x) = lim
δx→0

P(X1 < X2|X ∈ [x, x+ δx])

= lim
δx→0

P(X1 ∈ [x, x+ δx])P(X2 > x) + o(δx)

P(X ∈ [x, x+ δx])

=
e−λ1x(λ1δx + o(δx))e−λ2x + o(δx)

e−(λ1+λ2)x((λ1 + λ2)δx + o(δx))
=

λ1
λ1 + λ2

.

As required, this probability does not depend on the first event time for N(t).

3. Buses arrive at a certain stop according to a Poisson process with rate λ. If you take the bus
from that stop then it takes a time R, measured from the time at which you enter the bus,
to arrive home. If you walk from the bus stop the it takes a time W to arrive home. Suppose
that your policy when arriving at the bus stop is to wait up to a time s, and if a bus has not
yet arrived by that time then you walk home.
(a) Compute the expected time from when you arrive at the bus stop until you reach home.
(b) Show that if W < 1/λ + R then the expected time of part (a) is minimized by letting
s = 0; if W > 1/λ + R then it is minimizes by letting s = ∞ (that is, you continue to wait
for the bus); and when W = 1/λ+R all values of s give the same expected time.
(c) Give an intuitive explanation of why we need only consider the cases s = 0 and s = ∞
when minimizing the expected time.
Solution: (a) Let Es = E(journey time for strategy s). The journey time is the function of
the first arrival time of the rate λ Poisson process of bus arrivals. This has Exponential(λ)
distribution (prop 2.2.1). So

Es =

∫ ∞
0

λe−λt[(t+R)1(t ≤ s) + (s+W )1(t > s)] dt

where 1 is the indicator function. Thus

Es =

∫ s

0
λte−λt dt+R

∫ s

0
λe−λt dt+ (s+W )

∫ ∞
s

λe−λt dt

=
1− e−λs

λ
+R(1− e−λs) +We−λs

(b) Writing Es = (W − R − 1
λ)e−λs + 1

λ + R. We see that Es is a decreasing function of
s for (W − R − 1/λ) > 0, and increasing function for (W − R − 1/λ) < 0 and constant if
(W −R− 1/λ) = 0.
(c) From the memoryless property of the exponential distribution , if it was worth waiting
some time s0 > 0 for a bus, and the bus has not arrived at s0, then resetting time suggests
that it must be worth waiting another s0 time units. Thus, if the optimal s is positive, it
must be infinite.

4. Cars pass a certain street location according to a Poisson process with rate λ. A person
wanting to cross the street at that location waits until she can see that no cars will come by
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in the next T time units. Find the expected time that the person waits before starting to
cross. (Note, for instance, that if no cars will be passing in the first T time units then the
waiting time is 0.)

Comment: An elegant approach is to condition on the first arrival time.
Solution: Let W be the waiting time, and let X be the first arrival time.

E(W ) = E
[
E(W |X)

]
=

∫ ∞
0

E(W |X = x)λe−λx dx

=

∫ ∞
0

[
(E(W ) + x)1(x < T ) + 0× 1(x ≥ T )

]
λe−λx dx ,

where the last equality follows by the fact that when X < T , we can use the memoryless
property to reset the clock. Thus,

E(W ) = E(W )

∫ T

0
λe−λx dx+

∫ T

0
λxe−λx dx ,

which gives

E(W ) =
1

λ

[
eλT − (1 + λT )

]
.

5. Individuals enter a system in accordance with a Poisson process having rate λ. Each arrival
independently makes its way through the states of the system. Let αi(s) denote the probability
that an individual is in state i a time s after it arrived. Let Ni(t) denote the number of
individuals in state i at time t. Show that the Ni(t), i ≥ 1, are independent and Ni(t) is
Poisson with mean equal to

λE
[
amount of time an individual is in state i during its first t units in the system

]
.

Comment: You will probably want to make use of Theorem 2.3.1 of Ross. This question
is similar to a multivariate version of Proposition 2.3.2, and you may need the multinomial
distribution. If n independent experiments each give rise to outcomes 1, . . . , r with respective
probabilities p1, . . . , pr, and Xi counts the number of outcomes of type i, then X1, . . . , Xr are
multinomial. For

∑r
i=1 ni = n,

P(X1 = n1, . . . , Xr = nr) =
n!

n1! . . . nr!

r∏
i=1

pni
i .

Solution: Although not explicit in the question, we suppose there are countably infinite states.
Let N(t) be the arrival process, so N(t) =

∑∞
i=1Ni(t).

P(Ni(t) = ni ∀ i ∈ N) = E(P(Ni(t) = ni ∀ i ∈ N|N(t)))

= P(Ni(t) = ni ∀ i ∈ N|N(t) = n)P(N(t) = n)
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where n =
∑

i ni. Now let U1, . . . , Un be n i.i.d. random variables uniformly distributed on
[0, t]. Theorem 2.3.1 of Ross asserts that conditional on N(t) = n, the arrival times in [0, t]
S1, . . . , Sn have the same distribution as the ordered random variables: U(1), · · · , U(n). Let U
denote one uniform random variable on [0, t]. We define

βi
4
= P(arrival at time U, in state i at time t) =

1

t

∫ t

0
αi(t− s) ds =

1

t

∫ t

0
αi(s)ds .

Thus,

P(Ni(t) = ni ∀ i) = P

(
n∑
k=1

1{k−th arrival is at state i at time t} = ni ∀ i

)

= P

(
n∑
k=1

1{the arrival at time U(k) is at state i at time t} = ni ∀ i

)

= P

(
n∑
k=1

1{the arrival at time Uk is at state i at time t} = ni ∀ i

)

=
n!∏
i∈I ni!

∏
i

βni
i ×

(λt)ne−λt

n!

=
∏
i∈I

(λtβi)
ni

(ni)!
e−λtβi

=
∏
i∈I

P(Ni(t) = ni) ,

where P(Ni(t) = ni) is calculated in a similar way. We have thus obtained that {Ni(t), i ≥ 1}
are independent Poisson(λtβi) random variables.

To complete the proof, define random variable 1i(s) be 1 if an individual is in state i after s
time units and 0 otherwise. Then

E(time in i during individual’s first t units in the system) = E
[ ∫ t

0
1i(s) ds

]
=

∫ t

0

[
E1i(s)

]
ds =

∫ t

0
αi(s) ds = tβi .

Recommended reading:
Sections 2.1 through 2.4, excluding 2.3.1.

Supplementary exercises: 2.14, 2.22.
These are optional, but recommended. Do not turn in solutions—they are in the back of the book.
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