
Homework 3 (Stats 620, Winter 2017)

Due Tuesday February 7, in class
Questions are derived from problems in Stochastic Processes by S. Ross.

1. Prove the renewal equation

m(t) = F (t) +

∫ t

0
m(t− x) dF (x)

Hint: One approach is to use the identity E[X] = E
[
E[X|Y ]

]
for appropriate choices of X

and Y .

Solution:

m(t) = E(N(t))

= E(E(N(t)|X1))

=

∫ t

0
E(N(t)|X1 = x) dF (x) since X1 > t⇒ N(t) = 0

=

∫ t

0
E(1 + N(t− x)) dF (x) since renewals are i.i.d.

=

∫ t

0

[
1 + m(t− x)

]
dF (x)

= F (t) +

∫ t

0
m(t− x) dF (x) . (1)

2. Prove that the renewal function m(t), 0 ≤ t <∞ uniquely determines the interarrival distri-
bution F .
Hint: Laplace transforms may be useful.

Solution: Note that there are two definitions of Laplace transform. Under the definition of
Ross,

F̃ (s) =

∫ ∞
0

e−st dF (t) ,

and we also have the Laplace transform of the convolution F ∗G(t) =
∫∞
0 F (t− s)dG(s):

F̃ ∗G(s) =

∫ ∞
0

exp{−st}d
(∫ ∞

0
F (t− x)dG(x)

)
=

∫ ∞
0

exp{−st}
∫ ∞
0

dF (t− x)dG(x)

=

∫ ∞
0

∫ ∞
x

exp{−st}dF (t− x)dG(x) =

∫ ∞
0

∫ ∞
0

exp{−s(t + x)}dF (t)dG(x)

=

∫ ∞
0

exp{−sx}
∫ ∞
0

exp{−st}dF (t)dG(x)

=

∫ ∞
0

exp{−sx}F̃ (s)dG(x) = F̃ (s)G̃(s) .
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Thus the Laplace transform of Equation (1) becomes

m̃(s) = F̃ (s) + m̃(s)F̃ (s)

so

F̃ (s) =
m̃(s)

1 + m̃(s)
. (2)

By the uniqueness of Laplace transforms, m̃(s) uniquely determines F . Another way to obtain
Relation (2) is to calculate the Laplace transform of the identity

m(t) =
∞∑
n=1

Fn(t) ,

where Fn is the n-th convolution of F and F̃n(s) = F̃n(s). If we use another definition of
Laplace transform:

F̃ (s) =

∫ ∞
0

e−stF (t)dt ,

the calculation becomes slightly different. In particular, the Laplace transform of
∫ t
0 m(t −

s)dF (s) becomes m̃(s)sF̃ (s). In this case, the Relation (2) becomes

F̃ (s) =
m̃(s)

1 + sm̃(s)
.

3. Let {N(t), t ≥ 0} be a renewal process and suppose that for all n and t, conditional on the
event that N(t) = n, the event times S1, . . . , Sn are distributed as the order statistics of a set
of independent uniform (0, t) random variables. Show that {N(t),≥ 0} is a Poisson process.
Hint: Consider E[N(s) | N(t)] and then use the result of Problem 2.
Solution: Following the hints

E[N(s)|N(t) = n] = E[
n∑

i=1

1(U(i) ≤ s)]

where U(1), · · · , U(n) are the order statistics of n i.i.d. Unif[0, t] random variables U1, · · · , Un.
Thus

E[N(s)|N(t) = n] = E[
n∑

i=1

1(U(i) ≤ s)]

= E[
n∑

i=1

1(Ui ≤ s)] since ordering does not affect the sum

=
n∑

i=1

P[Ui ≤ s] = ns/t .
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Thus
m(s) = E[E[N(s)|N(t)]] =

s

t
E[N(t)] =

s

t
m(t) .

The only solution to this is m(s) = as for some constant a. This is exactly the renewal function
for a rate a Poisson process. Using the result from question 2 completes the argument.

4. The random variables X1, . . . , Xn are said to be exchangeable if Xi1 , . . . , Xin has the same
joint distribution as X1, . . . , Xn whenever i1, i2, . . . , in is a permutation of 1, 2, . . . , n. That
is, they are exchangeable if the joint distribution function P{X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn}
is a symmetric function of (x1, x2, . . . , xn). Let X1, X2, . . . denote the interarrival times of a
renewal process.
(a) Argue that conditional on N(t) = n,X1, . . . , Xn are exchangeable. Would X1, . . . , Xn, Xn+1

be exchangeable (conditional on N(t) = n)?
(b) Use (a) to prove that for n > 0

E
[
X1 + · · ·+ XN(t)

N(t)

∣∣N(t) = n

]
= E[X1|N(t) = n].

(c) Prove that

E
[
X1 + · · ·+ XN(t)

N(t)

∣∣N(t) > 0

]
= E[X1|X1 < t].

Hint: One approach to (a) involves computing

E
{
P[X1 ≤ x1, . . . , Xn ≤ xn, N(t) = n

∣∣X1, . . . , Xn]
}
.

Solution: (a) Employing the hint, we write

P[X1 ≤ x1, . . . , Xn ≤ xn, N(t) = n]

=

∫
y1≤x1

. . .

∫
yn≤xn

P
[
Xn+1 > t−

n∑
i=1

yi

]
dF (y1) . . . dF (yn)

=

∫ 1

0
. . .

∫ 1

0
I{y1≤x1,...,yn≤xn}F̄

(
t−

n∑
i=1

yi

)
dF (y1) . . . dF (yn).

Changing the order of integration, by Fubini’s theorem, we see that the integral is unchanged
by permutations of x1, . . . , xn.

(b) First note that

E
[
X1 + · · ·+ XN(t)

N(t)
|N(t) = n

]
=

n∑
i=1

1

n
E[Xi|N(t) = n] .

By the exchangeability established in part (a), E[Xi|N(t) = n] = E[X1|N(t) = n], i =
1, · · · , n. So the required result follows.
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(c)

E
[
X1 + · · ·+ XN(t)

N(t)
|N(t) > 0

]
=

∞∑
n=1

E[
X1 + · · ·+ XN(t)

N(t)
|N(t) = n]P[N(t) = n|N(t) > 0]

=

∞∑
n=1

E[X1|N(t) = n]P[N(t) = n|N(t) > 0]

= E[X1|N(t) > 0] = E[X1|X1 < t] .

5. Consider a miner trapped in a room that contains three doors. Door 1 leads her to freedom
after two-days’ travel; door 2 returns her to her room after four-days’ journey; and door 3
returns her to her room after eight-days’ journey. Suppose at all times she is equally to choose
any of the three doors, and let T denote the time it takes the miner to become free.
(a) Define a sequence of independent and identically distributed random variables X1, X2, . . .
and a stopping time N such that

T =
N∑
i=1

Xi.

Note: You may have to imagine that the miner continues to randomly choose doors even
after she reaches safety.
(b) Use Wald’s equation to find E[T ].
(c) Compute E

[∑N
i=1Xi|N = n

]
and note that it is not equal to E

[∑n
i=1Xi

]
.

(d) Use part (c) for a second derivation of E[T ].

Solution: (a) Define

X =


2 Door 1 (probability 1/3)
4 Door 2 (probability 1/3)
8 Door 3 (probability 1/3)

and N = min{n : Xn = 2}. Clearly N is a stopping time as the event N = n is determined
by the first n observations of X.
(b) Using Wald’s theorem, E[T ] = E[N ]E[X]. Further E[N ] = 3 since N follows a geometric
distribution with parameter p = 1/3. Also E[X] = 14/3. Thus E[T ] = 14.
(c)

E[

N∑
i=1

Xi|N = n] = E[

N∑
i=1

Xi|X1 6= 2, · · · , Xn−1 6= 2, Xn = 2] ,

= 2 + (n− 1)E[Xi|Xi 6= 2] = 2 + (n− 1)6 = 6n− 4

E[
n∑

i=1

Xi] = nE[Xi] = 14n/3 .

(d)E[T ] = E[E[
∑N

i=1Xi|N ]] = E[6N − 4] = 6× 3− 4 = 14.
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Recommended reading:
Sections 3.1 through 3.3.

Supplementary exercise: 3.7.
Optional, but recommended. Do not turn in a solution—it is in the back of the book.
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