Homework 3 (Stats 620, Winter 2017)

Due Tuesday February 7, in class
Questions are derived from problems in Stochastic Processes by S. Ross.

1. Prove the renewal equation

+/0 m(t — x) dF(x)

Hint: One approach is to use the identity E[X] = E[E[X|Y]] for appropriate choices of X
and Y.

Solution:

N(t))

E(N(#)[X1))
E(N(t)| X1 = z)dF(x) since X1 >t = N(t) =0

¢
E(1+ N(t —x))dF(x) since renewals are i.i.d.

[1+m(t — )] dF(z)

[l |

_ F(t)—i—/o mi(t — 2) dF (z). (1)

2. Prove that the renewal function m(t),0 < ¢ < oo uniquely determines the interarrival distri-
bution F.
Hint: Laplace transforms may be useful.

Solution: Note that there are two definitions of Laplace transform. Under the definition of
Ross,

Fs)= [~ ear),
and we also have the Laplace transform of the convolution F x G(t) = [ F(t — s)dG(s):
FaG(s) /ooexp{ sthd (/oo Ft — 2)dG(x )) :/ooexp{ st}/ dF(t — 2)dG(x)
_ / / exp{—st}dF(t — 2)dG(x / / exp{—s(t + 2)}dF(1)dG(x)
_ / exp{—sz} / exp{—st}dF ()dG(z)

0

= /OOO exp{—sz}F(5)dG(z) = F(5)G(s).



Thus the Laplace transform of Equation (1) becomes

m(s) = F(s)+m(s)F(s)
=y ()
FO) =156

By the uniqueness of Laplace transforms, m(s) uniquely determines F'. Another way to obtain
Relation (2) is to calculate the Laplace transform of the identity

(2)

m(t) =) Falt),
n=1

where F), is the n-th convolution of F and F,(s) = F™(s). If we use another definition of
Laplace transform:

F(s) = /0 T etR(dt,

the calculation becomes slightly different. In particular, the Laplace transform of fot m(t —
s)dF(s) becomes m(s)sF(s). In this case, the Relation (2) becomes

~ w(s)
Fo) =1 mm

. Let {N(t),t > 0} be a renewal process and suppose that for all n and ¢, conditional on the
event that N(¢) = n, the event times Si, ..., S, are distributed as the order statistics of a set
of independent uniform (0,¢) random variables. Show that {/N(¢), > 0} is a Poisson process.
Hint: Consider E[N(s) | N(t)] and then use the result of Problem 2.

Solution: Following the hints

n

E[N(s)|N(t) = n] = E[3 1(Ugy < 9)

i=1
where U(y), - -+ , Uy are the order statistics of n i.i.d. Unif[0, t] random variables Uy, - - - , Uy,
Thus
E[N(s)[N(H) =n] = E[>1(Ug < 9)
i=1

n

= E[Z 1(U; < s)] since ordering does not affect the sum
i=1

= XH:P[Ui <s]=mns/t.
i=1



Thus s s
m(s) = E[E[N(s)[N(@®)]] = {E[N(t)] = -m(t).

The only solution to this is m(s) = as for some constant a. This is exactly the renewal function
for a rate a Poisson process. Using the result from question 2 completes the argument.

. The random variables Xi,...,X,, are said to be exchangeable if X, ,...,X; has the same
joint distribution as Xj, ..., X,, whenever i1,19,...,1, is a permutation of 1,2,...,n. That
is, they are exchangeable if the joint distribution function P{X; < z1, X2 < z9,..., X, < z,}
is a symmetric function of (x1,x9,...,2,). Let X, Xo,... denote the interarrival times of a
renewal process.

(a) Argue that conditional on N (t) = n, X1, ..., X, are exchangeable. Would X1, ..., X, X;,11
be exchangeable (conditional on N(t) =n)?

(b) Use (a) to prove that for n > 0

E[X1+---+XN@

N(t) N () = ”] = E[X,|N(¢) = n].

(c) Prove that

E[X1+---+XN(t

NG Nt > 0] — E[X1] X < 1.

Hint: One approach to (a) involves computing

E{P[X| < z1,...,Xn <2y, N(t) =n|X1,..., X,]}.

Solution: (a) Employing the hint, we write

P[Xl Saj‘l,...,Xn §$H7N(t) :n]

- /yl<x1 o /n<:cn P[Xn—H > 1= Zlyz] dF(yl) .. _dF(yn)

1=
n

1 1
:/0 /0 Izt P (1= 32 0) dF () .. dF(y,).

i=1

Changing the order of integration, by Fubini’s theorem, we see that the integral is unchanged
by permutations of z1,...,z,.

(b) First note that

E [Xl + N(j) XN IN(t) = n] — Z:LE[XiN(t) =n].

By the exchangeability established in part (a), E[X;|N(t) = n] = E[X1|N(t) = n], i =
1,--- ,n. So the required result follows.



(c)

Xi+ -+ Xy et X _ _
N IN(t) > o] = ;E[ O IN(t) = n]P[N(t) = n|N(t) > 0]

= Y E[X1|N(t) = nP[N(t) = n|N(t) > 0]
n=1
= E[X1|N(t) > 0] = E[X1|X; < 1].

. Consider a miner trapped in a room that contains three doors. Door 1 leads her to freedom
after two-days’ travel; door 2 returns her to her room after four-days’ journey; and door 3
returns her to her room after eight-days’ journey. Suppose at all times she is equally to choose
any of the three doors, and let T denote the time it takes the miner to become free.

(a) Define a sequence of independent and identically distributed random variables X;, Xo,. ..
and a stopping time N such that

Note: You may have to imagine that the miner continues to randomly choose doors even
after she reaches safety.

(b) Use Wald’s equation to find E[T].

(c) Compute E[Zfil X;|N = n] and note that it is not equal to E[ > | X;].

(d) Use part (c) for a second derivation of E[T].

Solution: (a) Define
2 Door 1 (probability 1/3)
X = ¢ 4 Door 2 (probability 1/3)
8 Door 3 (probability 1/3)

and N = min{n : X,, = 2}. Clearly N is a stopping time as the event N = n is determined
by the first n observations of X.

(b) Using Wald’s theorem, E[T] = E[N]E[X]. Further E[N] = 3 since N follows a geometric
distribution with parameter p = 1/3. Also E[X] = 14/3. Thus E[T] = 14.

(c)

N N
ED XiN=n] = ED_ Xi|X1#2,-, X0 1#2X,=2],
=1 =1
= 24+ (n-DEX;|X; #2] =2+ (n—1)6 = 6n — 4
E[in] = HE[XZ] :14n/3.
=1

()E[T] = E[E[XY, X;|N]] =E[6N —4] =6 x 3 — 4 = 14.



Recommended reading:
Sections 3.1 through 3.3.

Supplementary exercise: 3.7.
Optional, but recommended. Do not turn in a solution—it is in the back of the book.



