
Homework 4 (Stats 620, Winter 2017)

Due Tuesday Feb 14, in class
Questions are derived from problems in Stochastic Processes by S. Ross.

1. Let A(t) and Y (t) denote respectively the age and excess at t. Find:
(a) P{Y (t) > x|A(t) = s}.
(b) P{Y (t) > x|A(t+ x/2) = s}.
(c) P{Y (t) > x|A(t+ x) > s} for a Poisson process.
(d) P{Y (t) > x,A(t) > y}.
(e) If µ <∞, show that, with probability 1, A(t)/t→ 0 as t→∞.

Hint: For (d), use a regenerative process argument (E.g. Ross, section 3.7) to find limt→∞ P(Y (t) >
x,A(t) > y). For (e), you may use without proof the following results on convergence with
probability 1: (L1) limn→∞ Sn/n = µ; (L2) limt→∞N(t) =∞; (L3) limt→∞N(t)/t = 1/µ.

Solution: (a)

P[Y (t) > x|A(t) = s] = P[XN(t)+1 > s+ x|SN(t) = t− s]
= P[X1 > s+ x|X1 > s] = F (s+ x)/F (s) .

Here is a more formal solution:

P[Y (t) > x|A(t) = s]

= P[SN(t)+1 > t+ x|SN(t) = t− s] = P[XN(t)+1 > s+ x|SN(t) = t− s]

=

∞∑
n=0

P[Xn+1 > s+ x|Sn = t− s,N(t) = n]P[N(t) = n|SN(t) = t− s]

=
∞∑
n=0

P[Xn+1 > s+ x|Sn = t− s,Xn+1 > s]P[N(t) = n|SN(t) = t− s]

=
∞∑
n=0

P[Xn+1 > s+ x|Xn+1 > s]P[N(t) = n|SN(t) = t− s](by independence)

= P[X1 > s+ x|X1 > s] = F (s+ x)/F (s)

(b)
p := P[Y (t) > x|A(t+ x/2) = s]

For s ≥ x/2, an argument similar to (a) allows us to write

p = P[no event in (t+ x/2− s, t+ x]| event at t+ x/2− s, no events in (t+ x/2− s, t+ x/2]]

= P[XN(t)+1 > s+ x/2|SN(t) = t+ x/2− s,XN(t)+1 > s]

= P[X1 > s+ x/2|X1 > s] = F (s+ x/2)/F (s)

For s < x/2, {A(t+ x/2) = s} ⇒ {Y (t) ≤ s− x/2}. It follows that p = 0.
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(c)

q ≡ P[Y (t) > x|A(t+ x) > s]

= P
[
no event in [t, t+ x]| no events in [t+ x− s, t+ x]

]
for 0 ≤ s ≤ x, since the process is Poisson with independent increments,

q = P
[
no event in [t, t+ x− s]

]
= exp−λ(x−s) ,

where λ is the rate of the Poisson process. For s > x, q = 1.
(d)

P(Y (t) > x,A(t) > y) = P(XN(t)+1 > t− SN(t) + x, t− SN(t) > y)

= P(X1 > t+ x, t > y|SN(t) = 0)P(SN(t) = 0)

+

∫ t

0
P(XN(t)+1 > t− SN(t) + x, t− SN(t) > y|SN(t) = s,XN(t)+1 > t− SN(t))dFSN(t)

(s)

= 1{t>y}P(X1 > t+ x|X1 > t)P(SN(t) = 0)

+

∫ t

0
1{t−s>y}P(X > t+ x− s|X > t− s)dFSN(t)

(s)

= 1{t>y}F (t+ x) +

∫ t−y

0
F (t+ x− s)dm(s) .

Let Pt = P[Y (t) > x,A(t) > y]. Define a regenerative process to be “on” at t if SN(t) < t− y
and SN(t)+1 > t + x. Thus, Pt is the probability that the process is “on” at time t. By the
regenerative process limit theorem

lim
t→∞

Pt =
E[time “on” during a cycle]

E[time of the cycle]

=
E[max(X1 − (x+ y), 0)]

µ

=
1

µ

∫ ∞
x+y

(z − x− y) dF (z)

(e)

lim
t→∞

A(t)

t
= lim

t→∞

t− SN(t)

t

= 1− lim
t→∞

SN(t)

N(t)
lim
t→∞

N(t)

t

= 1− µ/µ (by (L1), (L2) and (L3))

= 0

2. Consider a single-server bank in which potential customers arrive in accordance with a renewal
process having interarrival distribution F . However, an arrival only enters the bank if the
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server is free when he or she arrives; otherwise, the individual goes elsewhere without being
served. Would the number of events by time t constitute a (possibly delayed) renewal process
if an event corresponds to a customer:
(a) entering the bank?
(b) leaving the bank after being served?
What if F were exponential?

Solution: Let Xi denote the length of the i-th service and let Yi denote the time from the
end of i-th service until the start of the i + 1-th service. Let Y0 denote the time when first
arrival enters the bank (and gets service). Note that Xi and Yi may be dependent when the
arrival is not a Poisson process.
(a) In this case, each cycle consists of Zi = Xi + Yi, i = 1, 2, . . . and Z0 = Y0. Since Xi and
Yi are independent of Xj and Yj with j = 1, . . . , i− 1, {Zi}i∈N are i.i.d copies. We thus have
a delayed renewal process.
(b) In this case, Zi = Yi−1+Xi. When Xi and Yi are dependent, {Zi}i∈N are not i.i.d. copies.
We do not have a (delayed) renewal process. One counter example can be constructed as in
the sequel. Suppose the service distribution is given by

Y1 =

{
1 w.p. 0.5
10 w.p. 0.5

and the interarrival times of the customers to the bank Zn ∼ F are given by, Z1 = 6 w.p. 1.
Then, given a previous interval between departures Sn − Sn−1 = 3, we know that the next
arrival will enter the bank at time Sn + 4.

If F is exponential (a) still gives a delayed renewal process. (b) now results in a (non-delayed)
renewal process, since the memoryless property implies that Yi is independent of Xi, i ∈ N.
Hence, {Zi}i∈N are i.i.d. copies.

3. On each bet a gambler, independently of the past, either wins or loses 1 unit with respective
probability p and 1− p. Suppose the gambler’s strategy is to quit playing the first time she
wins k consecutive bets. At the moment she quits

(a) find her expected winnings.
(b) find the expected number of bets that she has won.

Hint: It may help you to look at Example 3.5(A) in Ross.

Solution: Let

Yn =

{
1 if nth game is a win
0 else

and

Xn =

{
1 if nth game is a win
−1 else

and let N = inf{n ≥ k :
∑n

m=n−k+1Xm = k} = inf{n ≥ k :
∑n

m=n−k+1 Ym = k}, the first

time k consecutive games are won. Let W =
∑N

i=1Xi, the gamblers total winnings. Also let

NW =
∑N

i=1 Yi, the number of games won.
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(a) From Ross, Example 3.5A, E[N ] =
∑k

i=1(1/p)
i. Also N is a stopping time w.r.t Xi, i =

1, 2, . . . . By Wald’s equation, we have

E[W ] = E[N ]E[X1] =

(
k∑
i=1

1

pi

)
(2p− 1)

(b) N is also a stopping time w.r.t. Yi, i = 1, · · · , so Wald’s equation gives

E[NW ] = E[N ]E[Y1] =

(
k∑
i=1

1

pi

)
p =

k−1∑
i=0

1

pi

4. Prove Blackwell’s theorem for renewal reward processes. That is, assuming that the cycle
distribution is not lattice, show that, as t→∞,

E
[
reward in(t, t+ a)

]
→ a

E[reward incycle]

E[time of cycle]
.

Assume that any relevant function is directly Riemann integrable.

Hint: You may adopt an informal approach by assuming that one can write

E
[ ∫ t+a

t
dR(s)

]
=

∫ t+a

t
E
[
dR(s)

]
,

and then developing the identity

E[dR(t)] = E[R1|X1 = t]dF (t) +

∫ t

0
{E[R1|X1 = t− x]dF (t− x)} dm(x).

If you can find a more elegant or more rigorous solution, that would also be good!

Solution: Let R(t) be the reward accumulated by time t. Then,

E[reward in (t, t+ a)] = E[R(t+ a)−R(t)]

= E[

∫ t+a

t
dR(s)]

=

∫ t+a

t
E[ dR(s)]

assuming that the interchange is allowed, e.g. if R(t) is increasing. Now,

E[ dR(t)] = E[E[ dR(t)|SN(t)]]

= E[ dR(t)|SN(t) = 0]P[SN(t) = 0] +

∫ ∞
0

E[ dR(t)|SN(t) = y] dFSN(t)
(y)

= E[ dR(t)|SN(t) = 0]F (t) +

∫ ∞
0

E[ dR(t)|SN(t) = y]F (t− y) dm(y) .
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Now, since R(t) only increases when an event occurs,

E[ dR(t)|SN(t) = y] = E[RN(t)+1|XN(t)+1 = t− y]dFXN(t)+1|SN(t)=y(t− y)

= E[R1|X1 = t− y]
dF (t− y)

F (t− y)
.

This established the identity

E[ dR(t)] = E[R1|X1 = t] dF (t) +

∫ t

0
(E[R1|X1 = t− y] dF (t− y)) dm(x) .

Now the key renewal theorem gives

lim
t→∞

E[ dR(t)] =

∫ t

0
E[R1|X1 = t] dF (t) dt = E[R1] dt .

Thus

lim
t→∞

∫ t+a

t
E[ dR(t)] =

∫ t+a

t
E[R1] ds = a

E[R1]

µ
.

Another approach: Note that

E[reward in (t, t+ a)] = E[

N(t+a)∑
n=1

Rn −
N(t)∑
n=1

Rn]

= E[

N(t+a)+1∑
n=1

Rn]− E[

N(t)+1∑
n=1

Rn] + E[RN(t)+1]− E[RN(t+a)+1]

Now N(t+ a) + 1 and N(t) + 1 are stopping times for the sequence (Xi, Ri), i = 1, · · · . Thus
from (generalized) Wald’s equation

E[

N(t)+1∑
n=1

Rn] = E[N(t) + 1]E[R]

and

E[

N(t+a)+1∑
n=1

Rn] = E[N(t+ a) + 1]E[R] ,

where E[R] is the expected reward in a cycle. Thus

E[reward in (t, t+ a)] = E[N(t+ a) + 1]E[R]− E[N(t) + 1]E[R] + E[RN(t)+1]− E[RN(t+a)+1]

= (m(t+ a)−m(t))E[R] + E[RN(t)+1]− E[RN(t+a)+1] .

Now
lim
t→∞

(m(t+ a)−m(t))E[R] = aE[R]/E[X] .
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from Blackwell’s theorem. Now, it suffices to show that limt→∞ E[RN(t)+1] exists and is finite.
Indeed,

E[RN(t)+1] = E[RN(t)+1|SN(t) = 0]F (t) +

∫ t

0
E[RN(t)+1|SN(t) = s]F (t− s)dm(s)

= E[R|X > t]F (t) +

∫ t

0
E[R|X > t− s]F (t− s) dm(s)

= h(t) +

∫ t

0
h(t− s) dm(s) ,

where h(t) = E[R|X > t]F (t). Then by the Key Renewal theorem, we have

lim
t→∞

E[RN(t)+1] =
1

E[X]

∫ ∞
0

h(s) ds .

Here we assumed that h(t) is directly Riemann integrable.

5. The life of a car is a random variable with distribution F . An individual has a policy of
trading in his car either when it fails or reaches the age of A. Let R(A) denote the resale
value of an A-year-old car. There is no resale value of a failed car. Let C1 denote the cost of
a new car and suppose that an additional cost C2 is incurred whenever the car fails.
(a) Say that a cycle begins each time a new car is purchased. Compute the long-run average
cost per unit time.
(b) Say that a cycle begins each time a car in use fails. Compute the long-run average cost
per unit time.
Note: In both (a) and (b) you are expected to compute the ratio of the expected cost incurred
in a cycle to the expected time of a cycle. The answer should, of course, be the same in both
parts.

Solution: (a) Clearly,

E[cost per cycle] = C1 − F (A)R(A) + F (A)C2

and

E[time of cycle] =

∫ A

0
xdF (x) +A(1− F (A)) .

So, treating the cost as the reward, the renewal reward theorem gives

lim
t→∞

E[accumulated cost by t]

t
=

E[cost per cycle]

E[time of cycle]
=
C1 − F (A)R(A) + F (A)C2∫ A

0 x dF (x) +AF (A)

(b) The chance that a car fails is F (A), so the number, N , of cars bought between failures
has the geometric distribution with parameter p = F (A). We have,

E[cost per cycle] = E[NC1 − (N − 1)R(A) + C2] = C1/F (A) + (1− 1/F (A))R(A) + C2
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and

E[time of cycle] = E[(N−1)A]+E[car life|car life < A] = F (A)A/F (A)+

∫ A

0
x dF (x)/F (A) .

Thus,

lim
t→∞

E[accumulated cost by t]

t
=
C1/F (A) + (1− 1/F (A))R(A) + C2

F (A)A/F (A) +
∫ A
0 x dF (x)/F (A)

.

Multiplying numerator and denominator by F (A) gives the same expression as in (a).

Recommended reading:
Sections 3.4 through 3.7, excluding subsections 3.4.3, 3.6.1, 3.7.1. We will not cover the material
in Section 3.8, though you may like to look through it.

Supplementary exercises: 3.24, 3.27, 3.35.
These are optional, but recommended. Do not turn in solutions—they are in the back of the book.
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