Homework 4 (Stats 620, Winter 2017)

Due Tuesday Feb 14, in class
Questions are derived from problems in Stochastic Processes by S. Ross.

1. Let A(t) and Y (¢) denote respectively the age and excess at ¢. Find:
(a) P{Y'(t) > z|A(t) = s}.
(b) P{Y (t) > z|A(t + z/2) = s}.
(c) P{Y(t) > z|A(t + x) > s} for a Poisson process.
(d) P{Y (t) >z, A(t) > y}.
(e) If u < oo, show that, with probability 1, A(t)/t — 0 as t — oo.

Hint: For (d), use a regenerative process argument (E.g. Ross, section 3.7) to find lim;_, P(Y () >
x,A(t) > y). For (e), you may use without proof the following results on convergence with
probability 1: (L1) limy, oo Sn/n = p; (L2) limy_oo N(t) = 005 (L3) limy_yoo N(t)/t = 1/p.

Solution: (a)

PIY(t) > 2|A(t) = 5] = P[Xygs > 5+ lSne =t —
= PX;>s+x|X1>s]=F(s+az)/F(s).

Here is a more formal solution:

PY () > z|A(t) = 5|
=P[Snwy+1 >t +z[Sne =t — 8] =P[Xnw11 > s+ 2SSy =t — 5]

= ZIP’[X”H > s+ xSy =t—5,N(t) =n|P[N(t) = n|Syy =t — 5]

n=0

= ZIP’[XnH > s+ xSy =1t —5,Xnp1 > s|P[N(t) = n|[Syu) =1t — 5]

n=0

= Z P[Xp11 > s+ 2| Xpy1 > s|P[N(t) = n|Sy) =t — s](by independence)
n=0

=P[X1 > s+2|X1 >3] =F(s+x)/F(s)

(b)
=PY(t) > z|A(t + x/2) = 5]

For s > x/2, an argument similar to (a) allows us to write

p = Pnoeventin (t+ x/2 —s,t+ z|| event at t + x/2 — s, no events in (t + /2 — s,t + x/2]|
= ]P’[XN(t)Jrl >S+$/2’SN(,5) :t+x/2_s,XN(t)+1 >8]
— B[Xy > s /21X > o] = s + 2/2) [F(s)

For s < z/2, {A(t+x/2) = s} = {Y(t) < s —x/2}. It follows that p = 0.



g = PY(t)>z|Alt+ z) > 5]
= P[no event in [t,t + ]| no events in [t + = — s, ¢ + ]|
for 0 < s < z, since the process is Poisson with independent increments,
q= P[no event in [¢t,t + x — s]] =exp @8)

where A is the rate of the Poisson process. For s > x, ¢ = 1.

(d)

P(Y(t) > 2, A(t) > y) = P(Xn@y+1 >t — Sne) + 2,6 = Sne) > v)
= P(Xl >t4+x,t > y]SN(t) = O)P(SN(t) = 0)

t
+/0 P(XN(t)+1 >t—SN(t)+$,t SN >y‘SN _S’XN(t)+1 >t—SN(t))dFSN(t)(S)
= 1{t>y}]P’(X1 >t+ x| X > t)P(SN(t) =0)

t
+/ L ooy P(X >t + 2 — s[X >t —5)dFsy, (s)
0
_ -y __
= 1{t>y}F(t—|—x) —i—/ F(t+x—s)dm(s).
0

Let P, = P[Y(t) > x, A(t) > y]. Define a regenerative process to be “on” at t if Sy <t—y
and Sy(p41 >t + 2. Thus, P is the probability that the process is “on” at time ¢. By the
regenerative process limit theorem

E[time “on” during a cycle]

tlg& ho= E[time of the cycle]
_ Efmax(Xi — (z+),0)
L
1 e}
= o[ eampare
2 T+y
(e)
t—S
lim —A(t) = lim — N0
t—oo ¢ t—o0 t
_ 1 ® i V(@)
=1 tlimoN()tl—)rgo t
= 1—p/p (by (L1), (L2) and (L3))

= 0

. Consider a single-server bank in which potential customers arrive in accordance with a renewal
process having interarrival distribution F'. However, an arrival only enters the bank if the



server is free when he or she arrives; otherwise, the individual goes elsewhere without being
served. Would the number of events by time ¢ constitute a (possibly delayed) renewal process
if an event corresponds to a customer:

(a) entering the bank?

(b) leaving the bank after being served?

What if F' were exponential?

Solution: Let X, denote the length of the i-th service and let Y; denote the time from the
end of i-th service until the start of the ¢ + 1-th service. Let Y denote the time when first
arrival enters the bank (and gets service). Note that X; and Y; may be dependent when the
arrival is not a Poisson process.

(a) In this case, each cycle consists of Z; = X; +Y;,i=1,2,... and Zy = Yp. Since X; and
Y; are independent of X; and Y; with j =1,...,i— 1, {Z;};en are i.i.d copies. We thus have
a delayed renewal process.

(b) In this case, Z; = Y;—1+X;. When X; and Y; are dependent, {Z; };cn are not i.i.d. copies.
We do not have a (delayed) renewal process. One counter example can be constructed as in
the sequel. Suppose the service distribution is given by

/1 wp. 05
n _{ 10 w.p. 0.5

and the interarrival times of the customers to the bank Z,, ~ F' are given by, Z; = 6 w.p. 1.
Then, given a previous interval between departures S, — S,—1 = 3, we know that the next
arrival will enter the bank at time .S,, + 4.

If F is exponential (a) still gives a delayed renewal process. (b) now results in a (non-delayed)
renewal process, since the memoryless property implies that Y; is independent of X;, ¢ € N.
Hence, {Z;};en are i.i.d. copies.

. On each bet a gambler, independently of the past, either wins or loses 1 unit with respective
probability p and 1 — p. Suppose the gambler’s strategy is to quit playing the first time she
wins k consecutive bets. At the moment she quits

(a) find her expected winnings.
(b) find the expected number of bets that she has won.

Hint: It may help you to look at Example 3.5(A) in Ross.
Solution: Let
v o— 1 if nth game is a win
"1 0 else

and
1 if nth game is a win
X, =
—1 else

and let N =inf{n > k:> " _ Xp=Fk}=inf{n>k:>" _ Y, =k}, the first
time k consecutive games are won. Let W = Zfi 1 X, the gamblers total winnings. Also let
Ny = Zf\;1 Y;, the number of games won.



(a) From Ross, Example 3.5A, E[N] = Zle(l/p)i. Also N is a stopping time w.r.t X;,i =
1,2,.... By Wald’s equation, we have

k
E[W] = E[N]E[X)] = (Z ;) (2p—1)

=1

(b) N is also a stopping time w.r.t. Y;,;i = 1,---, so Wald’s equation gives

k

1 gy
E[Nw] = E[N]E[Y1] = (Z pi> p=) 5
1=0

=1

. Prove Blackwell’s theorem for renewal reward processes. That is, assuming that the cycle
distribution is not lattice, show that, as t — oo,

E[reward incycle]

E d in(t,t '
[reward in(t,t + a)] — a Eltime of cycle]

Assume that any relevant function is directly Riemann integrable.

Hint: You may adopt an informal approach by assuming that one can write

E[ /t " dR(s)} = /t t+aE[dR(s)],

and then developing the identity
¢
E[dR(t)] = E[R1| X1 = t]dF(t) + / {E[R1| X1 =t — z|dF(t — x)} dm(x).
0

If you can find a more elegant or more rigorous solution, that would also be good!

Solution: Let R(t) be the reward accumulated by time ¢. Then,

E[reward in (t,t +a)] = E[R(t+a)— R(t)]
t+a
- Bl drG)

= [ Blane)

assuming that the interchange is allowed, e.g. if R(¢) is increasing. Now,
E[dR(t)] = E[E[dR(®)[Snl]

— E[dR(1)|Sn ) = OPSne = 0] + /0 " EBLdR(1) Sy = 1] dFsy (1)

— E[dR(1)|Sn ) = OF (1) + /0 T ELAR(0)|She = yIF(t — ) dm(y).

4



Now, since R(t) only increases when an event occurs,

E[dR(t)’SN(t) =y] = E[RN(t)—i-l’XN(t)-i-l =1t- y]dFXN<t)H\SN(t)=y(t )
dF(t —y)

= E[R1’X1 :t—y] F(t—y) .

This established the identity
¢
B[dR(1)] = B[Ri| X, =t dF () + [ (BlRi[X) =t = y)dF(t — y) dm(z).
0
Now the key renewal theorem gives

Jim E[dR(1)] = /O "E[Ru|X1 = 1] dF(t) di = B[R] dt .

Thus t+ t+
a a E
lim E[dR(t)] = / E[Ri]ds = a B
t=00 Jy t K
Another approach: Note that
N(t+a) N(t)
E[reward in (t,t+a)] = E| Z R, — Z R,
n=1 n=1
N(t+a)+1 N(t)+1
= E[ Y Ra-E[ Y Ru+E[Rywm] —E[RN(1a1]
n=1 n=1

Now N(t+a)+1 and N(t) + 1 are stopping times for the sequence (X;, R;),i =1,---. Thus
from (generalized) Wald’s equation

N(t)+1
E[ > Rn] =E[N(t)+ 1|E[R]

n=1

and
N(t+a)+1

E[ ) R, =E[N(t+a)+1E[R],

n=1

where E[R] is the expected reward in a cycle. Thus
Elreward in (4t +a)] = E[N(t +a) -+ UE[R] — B[N () + UE[R] + E[Ry (1] — B[Ry 1051
= (m(t+a) —m()E[R] + E[Rn()41] — E[RN(t4a)+1] -

Now
lim (m(t + a) — m(t))E[R] = a«E[R]/E[X].

t—o00



from Blackwell’s theorem. Now, it suffices to show that lim; . E[Rx(;)+1] exists and is finite.
Indeed,

ElRNw+1] = E[Rn@1lSne = OJF'(t) + /OtE[RN(t)Jrl’SN(t) = s|F(t — s)dm(s)
— E[RIX > F() + /(:IE[R]X >t — STt — 5) dm(s)
= h(t)+ /Ot h(t — s)dm(s),
where h(t) = E[R|X > t]F(t). Then by the Key Renewal theorem, we have

. 1 o
Jim B[Ry 41] = IE[X]/O h(s)ds.

Here we assumed that h(t) is directly Riemann integrable.

. The life of a car is a random variable with distribution F. An individual has a policy of
trading in his car either when it fails or reaches the age of A. Let R(A) denote the resale
value of an A-year-old car. There is no resale value of a failed car. Let Cy denote the cost of
a new car and suppose that an additional cost Cs is incurred whenever the car fails.

(a) Say that a cycle begins each time a new car is purchased. Compute the long-run average
cost per unit time.

(b) Say that a cycle begins each time a car in use fails. Compute the long-run average cost
per unit time.

Note: In both (a) and (b) you are expected to compute the ratio of the expected cost incurred
in a cycle to the expected time of a cycle. The answer should, of course, be the same in both
parts.

Solution: (a) Clearly,
E[cost per cycle] = C; — F(A)R(A) + F(A)Cq
and
A
E[time of cycle] = / xdF(x)+ Al — F(A)).
0
So, treating the cost as the reward, the renewal reward theorem gives

lim E[accumulated cost by t]  E[cost per cycle]  Cy — F(A)R(A) + F(A)Cy
t—o0 t E[time of cycle] foA rdF(z) + AF(A)

(b) The chance that a car fails is F/(A), so the number, N, of cars bought between failures
has the geometric distribution with parameter p = F'(A). We have,

E[cost per cycle] = E[NC; — (N —1)R(A) + C2] = C1/F(A)+ (1 —1/F(A))R(A) + Cy



and
E[time of cycle] = E[(N —1)A]+E[car life|car life < A] = F(A)A/F(A) —|—/A xdF(z)/F(A).
0

Thus,
lim E[accumulated cost by t]  C1/F(A) + (1 —1/F(A))R(A) + Co

i ¢ F(A)A/F(A) + [z dF(z)/F(A)

Multiplying numerator and denominator by F(A) gives the same expression as in (a).

Recommended reading:

Sections 3.4 through 3.7, excluding subsections 3.4.3, 3.6.1, 3.7.1. We will not cover the material
in Section 3.8, though you may like to look through it.

Supplementary exercises: 3.24, 3.27, 3.35.
These are optional, but recommended. Do not turn in solutions—they are in the back of the book.



