Homework 6 (Stats 620, Winter 2017)
Due Thursday March 16, in class

1. In a branching process the number of offspring per individual has a Binomial (2, p) distribu-
tion. Starting with a single individual, calculate:
(a) the extinction probability;
(b) the probability that the population becomes extinct for the first time in the third gener-
ation.
(c) Suppose that, instead of starting with a single individual, the initial population size Z
is a random variable that is Poisson distributed with mean A. Show that, in this case, the
extinction probability is given, for p > 1/2, by

exp{A(1 — 2p)/p°}.

Instructions: (b) If X, is the size of the nth generation, this question is asking you to find
P(X3=0,X2>0,X; >0/Xy=1). This can be done by brute force calculation, or by using
probability generating functions.

Solution:
(a) Say p; = P[X; = j|Xo = 1] = (?)pj(l —p)?7J for j = 0,1,2 and 0 for j > 2. Now
mo = P[Population dies out] = > 22 mp;. Thus

7o = (1—p)* + 2mo(1 — p)p + m3p°.

Solving and choosing the smaller root

{1 p<.5b
o = 1-p\2
(55)° p>5

(b) Let ¢, (s) = E[sX"]. It was shown in class that ¢, (s) = ¢1(¢n_1(s)). Also its easy to see
that ¢1(s) = (sp+1—p)2. Also P[X,, = 0] = ¢,(0). Thus the probability of extinction in
third generation is

$3(0) — ¢2(0) = d1(d1(¢1(0))) — d1(1(0))
= 4p*(1—p)" +6p*(1 — p)° + 6p" (1 — p)° + 4p°(1 — p)" + p°(1 — p)®

(c) Probability of extinction when Zp = 1 and p > .5 is (lipp)Q. All families behave inde-
pendently of each other. Thus when Zj has a Poisson distribution with parameter (), the
probability of extinction equals

g[(l;ﬁ]np[zozn],

N2
which is exactly the probability generating function of Poisson r.v. evaluated at (1}'%. Thus

o o A2y
probability of extinction equals ¢ »? .




2. Consider a time-reversible Markov chain with transition probabilities F;; and limiting proba-
bilities 7;; and now consider the same chain truncated to the states 0,1,, M. That is, for the
truncated chain its transition probabilities P;; are

_ Pij+2k>M]Dika 0<i1<M,j=1
Pij = Pj, 0<i#j<M
0, otherwise.

Show that the truncated chain is also time reversible and has limiting probabilities given by

T

T, = =M
> ico i

Solution: Assume that the truncated chain is also irreducible. Simply verify that {7; }o<i<m
defined by

_ T
Ty = M )
D ico i
satisfy
M
Eﬁizﬁjﬁj,vogi,j <M and Zfi: 1..
1=0

Since the original Markov chain is time-reversible, we have
Pijﬂ"i == .le'ﬂ'j ,\V/i,j Z 0.

It follows that for any 0 < 4,5 < M, we have

M M
. T T —
PyTi= 57— (Pz'j +Lmgy D Pik) = - (sz' +1gizgy D ij) = Pjimj.

i=0 T k>M i=0 k>M

3. For an ergodic semi-Markov process:
(a) Compute the rate at which the process makes a transition from 7 into j.
(b) Show that Zz Pl]/ﬂ"ﬂ = 1//ij.
(c) Show that the proportion of time that the process is in state i and headed for state j is
Pyijnij [ wis where ni; = [ Fyj(t) dt.
(d) Show that the proportion of time that the state is ¢ and will next be j within a time x is

Pijnij

Hig

Fij (),

where FZ‘; is the equilibrium distribution of Fj;

Hint: all parts of this question can be done by defining appropriate renewal-reward processes.
For (d), we use the definition Fj;(z) = Iy Fij(y)dy/ [° Fij(y) (see Ross, p131). This is the
delay required to make a delayed renewal process with renewal distribution Fj; stationary. It
arises here since it is also the limiting distribution of the residual life process for a non-lattice
renewal process.



Solution: (a) Define a (delayed) renewal reward process: a renewal occurs when state i is
entered from other states and the reward of each n—th cycle R, equals 1 if in the n—th cycle,
the state after 4 is j and 0 otherwise. Let R;;(t) be the total number of transitions from ¢ to
j by time t. We have

N(t) N(t)+1 N(t)

Y Ry<Rj(t)< > Ry<Y Ry+1.
n=0 n=0 n=0

Thus the rate at which the process makes a transition from ¢ to j equals

i B _ E[R] _ Py

(b) Let R;(t) be the number of visits to state j by time ¢. Thus

ZRij(t) = R;(t)

o Ra®) L Ri(0)
— t—00 t t—00 t
Z& _ 1

t i

i
(c) Define cycle as in part (a) and the reward in a cycle to be 0 if the transition from i is not
into j and T;; the time taken for transition if the transition from ¢ is into j. Thus
R(t) _ E[R] _ PyE[T;] _ Pijni

lim =
t—oo ¢ E [X] i s

(d) Define cycle as in last part and the reward in a cycle as 0 if the transition from i is not
into j and min(z,Tj;) if the transition from ¢ is into j. Thus
R(t) _E[R]  PyE[min(z, Tyj)] B

. iTij
1 = I e .
tiglo t E[X] i i K (:U)

. A taxi alternates between three locations. When it reaches location 1 it is equally likely to
go next to either 2 or 3. When it reaches 2 it will next go to 1 with probability 1/3 and to 3
with probability 2/3. From 3 it always goes to 1. The mean times between location i and j
are t12 == 20,t13 = 30 and t23 =30 (Wlth tij == tji)-

(a) What is the (limiting) probability that the taxi’s most recent stop was at location 4,7 =
1,2,37

(b) What is the (limiting) probability that the taxi is heading for location 27

(c) What fraction of time is the taxi traveling from 2 to 37 Note: Upon arrival at a location
the taxi immediately departs.

Solution: First we write the transition matrix:

P=

—wli= O
S Ol
O wlhoo|—



Now the stationary probabilities can be found by solving 7 = 7P. We have

6 3 5

M=M= =y

Since p; = Y, Pijpij, we have pg = 25, o = 80/3 and p3 = 30.
(a) By formula

T g

p=

LYy
we have 15 S 15
P=="P=" and Py = —.
17387727 387 AT 7 33

They are the correspondingly required limiting probabilities.

(b) Use part (c) of 4.48. Since the taxi can only go to location 2 from location 1, the limiting
probability that taxi is headed for location 2 equals

3

M1y
P — = —.
127712(P1) 19

(c) Same argument as in part (b) implies that the proportion of the time that the taxi is

traveling from location 2 to location 3 equals

H2\ 1 3
)

Pognosz( 2}

19°

Recommended reading:
Sections 4.5, 4.7, 4.8, 5.1, 5.2. You may skip Section 4.6, which will not be covered in this course.

Supplementary exercise: 4.40
These are optional, but recommended. Do not turn in solutions—they are in the back of the book.



