Homework 8 (Stats 620, Winter 2017)

Due Thursday March 30, in class

- 1. Let $\{N(t)\}$ be a Poisson process with rate λ . Since $\{N(t)\}$ is also a continuous time Markov chain, it can also be defined in terms of its transition rates q_{ij} and rates ν_i of leaving i (together with its initial distribution $P_i(0) = \mathbb{P}\{N(0) = i\}$). For some fixed time T, let $N^*(t) = N(T-t)$ for $0 \le t \le T$. $\{N^*(t)\}$ is an inhomogeneous continuous time Markov chain, so it is specified by time-dependent parameters $q_{ij}^*(t)$ and $\nu_i^*(t)$ (together with its initial distribution $P_i^*(0) = \mathbb{P}\{N^*(0) = i\}$).
 - (a) Write down expressions for q_{ij} , ν_i and $P_i(0)$.

(b) Obtain expressions for $q_{ij}^*(t)$, $\nu_i^*(t)$ and $P_i^*(0)$. Note that q_{ij}^* does not depend on λ . Note also that duration in state *i* viewed in reverse time is different from forward in time (as mentioned in the notes, they are the same if the Markov chain is stationary).

Hint: One approach is to employ Theorem 2.3.1 of Ross, which you may use without proof.

- 2. The following problems arises in molecular biology. The surface of a bacterium consists of several sites at which foreign molecules—some acceptable and some not—become attached. We consider a particular site and assume that molecules arrive at the site according to a Poisson process with parameter λ . Among these molecules a proportion α are acceptable. Unacceptable molecules stay at the site for a length of time which is exponentially distributed with parameter μ_1 , whereas an acceptable molecule remains at the site for an exponential time with departure rate μ_2 . An arriving molecule will become attached only if the site is free of other molecules.
 - (i) What percentage of the time is the site occupied with an acceptable molecule?
 - (ii) What fraction of arriving acceptable molecules become attached?
- 3. An undirected graph has n vertices and edges between all n(n-1)/2 vertex pairs. A particle moves along the graph as follows: Events occur along the edge (i, j) according to independent Poisson processes with rates λ_{ij} . An event on edge (i, j) causes the edge to become "excited". If the particle is at vertex *i* the moment that the edge (i, j) becomes excited then the particle instantaneously moves from to vertex *j*. Let P_j denote the (limiting) proportion of the time that the particle is at vertex *j*. Explain why the position of the particle follows a continuous time Markov chain, and hence show that $P_j = 1/n$.

Hint: use time reversibility.

- 4. Verify that X_n/m^n , $n \ge 1$, is a martingale when X_n is the size of the n^{th} generation of a branching process whose mean umber of offspring per individual is m.
- 5. Consider the Markov chain which at each transition either goes up 1 with probability p or down 1 with probability q = 1 p. Argue that $(q/p)^{S_n}$, $n \ge 1$, is a martingale.

6. Consider a Markov chain $\{X_n, n \ge 0\}$ with $P_{NN} = 1$. Let P(i) denote the probability that this chain eventually enters state N given that it starts in state i. Show that $\{P(X_n), n \ge 0\}$ is a martingale.

Hint: One approach involves defining $A = \{X_{\infty} = N\}$ and showing that $\mathbb{E}[\mathbb{P}(A \mid X_n) \mid X_{n-1}] = \mathbb{E}[\mathbb{P}(A \mid X_n, X_{n-1}) \mid X_{n-1}] = \mathbb{P}(A \mid X_{n-1}).$

Recommended reading:

Sections 5.6 (up to Prop. 5.6.3, i.e. pp 257–261), 6.1, 6.2.

Supplementary exercise: 6.2, 6.7

Optional, but recommended. Do not turn in solutions.