
Homework 9 (Stats 620, Winter 2017)

Due Thursday April 6, in class
Questions are derived from problems in Stochastic Processes by S. Ross.

1. Consider successive flips of a coin having probability p of landing heads. Use a martingale
argument to compute the expected number of flips until the following sequences appear:

(a) HHTTHHT

(b) HTHTHTH

Solution:

Proceed as in Example 6.2 A (Ross). Let N denote the number of flips until the pattern
appears. Imagine a sequence of gamblers, each initially having 1 unit playing at a fair gambling
casino. Gambler i begins betting at the beginning of day i. At the beginning of each day
another gambler starts playing. Let Xn be the total winnings of the casino after the nth
day. Since all bets are fair, {Xn} is a martingale with mean 0. At the end of day N , each of
the gamblers 1, · · · , N − 7 would have lost 1 unit. For gamblers N − 6, · · · , N the observed
pattern is a part of the stopping pattern.

(a)
H H T T H H T

won p−4q−3 − 1 lost 1 lost 1 lost 1 won p−2q−1 − 1 lost 1 lost 1

Hence
XN = N − 2− (p−4q−3 − 1)− (p−2q−1 − 1) = N − p−4q−3 − p−2q−1 .

It is easy to verify condition (iii) of the Martingale Stopping Theorem, 6.2.2 (Ross). Thus
E[XN ] = 0 or

E[N ] = p−4q−3 + p−2q−1 .

(b)

H T H T H T H
won p−4q−3 − 1 lost 1 won p−3−2− 1 lost 1 won p−2q−1 − 1 lost 1 won p−1 − 1

Hence
XN = N − p−4q−3 − p−3−2− p−2q−1 − p−1 .

It is easy to verify condition (iii) of the Martingale Stopping Theorem, 6.2.2 (Ross). Thus
E[XN ] = 0 or

E[N ] = p−4q−3 + p−3q−2 + p−2q−1 + p−1 .

2. Consider a sequence of independent tosses of a coin and let P{head} be the probability of a
head on any toss. Let A be the hypothesis that P{head} = a and let B be the hypothesis
that P{head} = b, for 0 < a, b < 1. Let Xi denote the outcome of the ith toss and let

Zn =
P{X1, ...Xn | A}
P{X1, ...Xn | B}
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Show that if B is true, then:

(a) Zn is a martingale, and

(b) limn→∞ Zn exists with probability 1.

(c) If b 6= a, what is limn→∞ Zn?

Solution:

(a) Let Xi = 1 if the outcome of the ith toss is head, Xi = 0 if it is tail. From independence,

Zn =
P (X1, · · · , Xn|A)

P (X1, · · · , Xn|B)
= Zn−1

P (Xn|A)

P (Xn|B)
(1)

Now

E
[
P (Xn|A)

P (Xn|B)

]
= E

[
aXn(1− a)1−Xn

bXn(1− b)1−Xn

]
=

a

b
b +

1− a

1− b
(1− b) = 1 .

Further, as shown in the following E|Zn| <∞. Thus {Zn} is a product martingale.

(b) Zn > 0. Thus E|Zn| = E[Zn]. Since {Zn} is a product martingale E[Zn] = 1 and
hence bounded. So by Martingale Convergence Theorem limn→∞ Zn exists and is finite with
probability 1.

(c) From equation (1) it is clear that Zn can have a finite (random or constant) non- zero
limit only if

lim
n→∞

P (Xn|A)

P (Xn|B)
= 1

with probability 1. However for a 6= b it is not possible. Thus the limit is 0.

Another approach. Let Sn =
∑n

i=1Xi. Note that

Zn =

n∏
i=1

aXi(1− a)1−Xi

bXi(1− b)1−Xi
=
(a
b

)Sn
(

1− a

1− b

)n−Sn

=

(
a(1− b)

b(1− a)

)Sn
(

1− a

1− b

)n

,

and thus with probability 1,

logZn

n
=

Sn

n
log

(
a(1− b)

b(1− a)

)
+ log

(
1− a

1− b

)
−→ b log

(
a(1− b)

b(1− a)

)
+ log

(
1− a

1− b

)
as n→∞

Note that

b log

(
a(1− b)

b(1− a)

)
+ log

(
1− a

1− b

)
= b log

(
a
b

)
+ (1− b) log

(
1−a
1−b

)
≤ log

(
bab + (1− b)1−a1−b

)
= 0 ,

where the last inequality follows from Jensen’s inequality, and the equality holds only when
a
b = 1−a

1−b , i.e., a = b. Hence, we have shown that

lim
n→∞

logZn

n
< 0 a.e. ,

which implies that limn→∞ Zn = 0 a.e..
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3. An ordinary deck of cards is randomly shuffled and then the cards are exposed one at a time.
At some time before all the cards have been exposed you must say “next”, and if the next card
exposed is a spade then you win and if not then you lose. For any strategy, show that at the
moment you call “next” the conditional probability that you win is equal to the conditional
probability that the last card is spade. Conclude from this that the probability of winning is
1/4 for all strategies.

Hint: one approach is to show that the proportion of spades remaining is a martingale.

Solution:

Let Xn indicate if the nth card is a spade and Zn be the proportion of spades in the remaining
cards after the n card. Thus E|Zn| <∞ and

E[Zn|Zn−1, · · · , Z1] =
(52− n + 1)Zn−1 − 1

52− n + 1
Zn−1 +

(52− n + 2)Zn−1
52− n + 1

(1− Zn−1) = Zn−1 .

Hence {Zn} is a martingale.
Note that X52 = Z51. Thus

E[Xn+1|Xn, · · · , X1] = E[Xn+1|Zn, · · · , Z1] = Zn

= E[Z51|Zn, · · · , Z1] = E[X52|Xn, · · · , X1] .

Finally, let N be the stopping time corresponding to saying “next” for a given strategy.

P (Win) = E[XN+1] = E[E[XN+1|N ]]

= E[ZN ] = E[Z1] = 1/4 . (2)

where equation (2) uses the Martingale Stopping Theorem.

4. Let {Sn, n ≥ 0} denote a random walk in which Xi has distribution F . Let G(t, s) denote
the probability that the first value of Sn that exceeds t is less than or equal to t+ s. That is,

G(t, s) = P{first sum exceeding t is ≤ t + s}

Show that

G(t, s) = F (t + s)− F (t) +

∫ t

−∞
G(t− y, s)dF (y).

Comment: The quantity G(t, s) is interesting because it gives the distribution of the “over-
shoot” that is necessary to do a more accurate approximation than Equation 7.3.2 using the
identity in Equation 7.3.1.

Solution:

Sn|X1 is distributed as X1 + Sn−1. Thus if A = {first sum exceeding t is ≤ t + s},

G(t, s) ≡ P (A) = E[P (A|X1)]

= F (t + s)− F (t) +

∫ t

−∞
G(t− y, s)dF (y) .
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5. Let X(t) be a standard Brownian motion and define Y (t) = tX(1/t).

(a) What is the distribution of Y (t)?

(b) Compute Cov((Y (s), Y (t)).

(c) Argue that {Y (t), t ≥ 0} is also Brownian motion.

(d) Let T = inf{t > 0 : X(t) = 0}. Using (c) present an argument that P{T = 0} = 1.

Solution:

(a) The characteristic function of Y (t)

E[exp(isY (t))] = E[exp(istX(1/t))] = exp

(
−s2t2

2t

)
= exp

(
−s2t

2

)
.

Thus Y (t) ∼ N(0, t).

(b)

Cov(Y (s), Y (t)) = Cov(sX(1/s), tX(1/t))

= st Cov(X(1/s), X(1/t)) = st min(1/s, 1/t)

= min(s, t) .

(c) Since {X(t)} is a Gaussian process so is {Y (t)}. Further from parts (a) and (b) above
{Y (t)} is a Brownian Motion.

(d) Since Y (t) is Brownian Motion then T1 ≡sup{t : Y (t) = 0} =∞ with probability 1. Note
{T = 0} = {T1 =∞}. Thus P (T = 0) = 1.

6. Let X(t) be a standard Brownian motion and define W (t) = X(a2t)/a for a > 0. Verify that
W (t) is also Brownian motion.

Solution: W (0) = X(0)/a = 0. Non-overlapping increments of W (t) map to non-overlapping
increments of X(t). Thus increments of W (t) are independent. Further, for s < t,

W (t)−W (s) =
X(a2t)−X(a2s)

a

D
= X(a2(t− s))/a ∼ N(0, t− s) .

Thus W (t) has stationary increments with required distribution. Therefore W (t) is a Brow-
nian Motion.

Recommended reading:
Sections 6.4, 7.3, 8.1, 8.2
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