5. Continuous-time Markov Chains

e Many processes one may wish to model occur in
continuous time (e.g. disease transmission
events, cell phone calls, mechanical component
failure times, ...). A discrete-time

approximation may or may not be adequate.

e {X(t),t >0} is a continuous-time Markov
Chain if it is a stochastic process taking values
on a finite or countable set, say 0,1, 2, ..., with
the Markov property that

P|X(t+ s)=7|X(s)=1, X (u)=z(u) for 0 < u < s
= P[X(t+s):j\X(s):i].

e Here we consider homogeneous chains,

meaning

PIX(L+5)=7]X(s)=1] = P[X()=7| X(0)=1]



e Write {X,,,n > 0} for the sequence of states
that {X(¢)} arrives in, and let S,, be the

corresponding arrival times. Set
XA =8,—S, 1.

e The Markov property for { X (¢)} implies the
(discrete-time) Markov property for { X, }, thus
{X.,} is an embedded Markov chain, with

transition matrix P = |[F;;].

e Similarly, the inter-arrival times {X,;?} must be
conditionally independent given {X,,}. Why?

e Show that X,,ijl has a memoryless property
conditional on X,,_1, P[ X2 >t +s| X7 >

s, Xpo1=z| =P|X} > t| X,_1=x] ie, X' is
conditionally exponentially distributed given
Xn_1.



e We conclude that a continuous-time Markov

chain is a special case of a semi-Markov process:

Construction 1. {X(¢),t > 0} is a

continuous-time homogeneous Markov chain if it

can be constructed from an embedded chain
{X,,} with transition matrix P;;, with the
duration of a visit to ¢ having Exponential (v;)

distribution.

e We assume 0 < v; < oo in order to rule out

trivial situations with instantaneous visits.



e An alternative to Construction 1 is as follows:

Construction 2

When X (t) arrives in state ¢, generate random
variables having independent exponential
distributions, Y, ~ Exponential (¢g;;) where

qij = v;iP;; for j # i¢. Choose the next state to be
k = argmin; Y}, and the time until the transition

(i.e. the visit time in ¢) to be min; Yj.

e Why is this equivalent to Construction 17
(i) check that P|next state is k| = P



(ii) Check that min; Y, ~ Exponential (v;).

e We assume that Markov chains of interest are
regular, meaning that the # of transitions in
any finite length of time is finite with probability
1. A non-regular process is explosive. E.g., if
an increasing chain takes time o™ to jump from
n to n + 1, then the chain will reach infinity in a
finite time, 1/(1 — «) for 0 < a < 1.



e We define P;;(t) =P[X(t+s) =7| X(s) =]

Lemma 1 (see Ross, Problem 5.8 with solution

in the back)

1—P;; (t)
t
(i) Timy o 248 — ¢, for j # i

(1) limt_>() = U;

e This leads to another characterization of
continuous Markov chains. ..

Construction 3. A continuous-time
homogeneous Markov chain is determined by its

infinitesimal transition probabilities:

Pij(h) = hgij+o(h) for j #0
P;(h) = 1—hv;+o(h)

e This can be used to simulate approximate
sample paths by discretizing time into small
intervals (the Euler method).

e The Markov property is equivalent to
independent increments for a Poisson counting
process (which is a continuous Markov chain).



e Lemma 1 can be rewritten as

#1(O) ]—o =7(0)Q
with ~(t) a row vector, ;(t) = P[X (¢t) = 1], and
Qij = ij for i # j

Qii = —v; = _Z%’j

e this identity follows from definitions of v(¢) and
P;;(t), noting the necessary interchange of

sum & limit.



Example. A population of size N has I; infected

individuals, S; susceptible individuals and R;
recovered /removed individuals. New infections
occur at rate £1;5; and infected individuals
become removed /recovered at rate -, i.e. the
overall rate of leaving the infected state is 1.
Supposing the system is Markovian, what are the

infinitesimal transition probabilities?



Theorem (Kolmogorov’s Backward Equation)

%Pij (1) = Zk# Qi Prj(t) — viPi;(t).
Or, in matrix notation, with P(t) = [P;;(t)],

4P(t) = Q P(1)

e The backward equation can be used to find

transition probabilities, since it has solution
P(t) = et [when this is well defined] where

eQ = 3% QFtk k!

Example: For the two-state Markov chain, with

rates o and [ as shown, find
P[X(t) =0|X(0) =0].

()

0




Example continued
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e To sketch a proof of the backward equation, we

first show
Lemma 2. Pij (t -+ S) = ZZO:O sz(t)ij(S)
Why is this true?

e Then take limits, identifying an issue of
exchanging limits and summation but referring
to Ross for the details.
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e A rather subtly different result is

Kolmogorov’s Forward Equation

%P’ij(t) — Zk;éj QchPik(t) — I/jPZ' (t)

Or, in matrix notation,

G =Prt)Q

e This can be written as L~(t) = v(t)Q

(Compare with comment on Lemma 1).

e Unfortunately, the forward equation requires
regularity conditions to be true (the backward

equation is generally true).

e For finite state chains, the forward equation
always holds. It can be shown that the forward
equation holds whenever » |, P;;(t)v, < oo for

any ¢ and t,
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Example: The continuous-time birth
For

this model, the forward equation has

and death process is as shown.

a unique solution which also solves the
backward equation (e.g., Grimmett &
Stirzaker, Probability and Random Pro-
cesses). We show this for the pure birth
process, with p; = 0 for all .
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Example continued
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Derivation of the Forward Equation

(identifying issues of exchanging summation &

limits, but not attempting to fully resolve them).
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e Perhaps the main use of the forward/backward
equations is to show P(t) = e®??, assuming the
(possibly infinite-dimensional) matrix

exponential exists.

e The general method of deriving a differential

equation can be used to find other quantities. ..

Example. Let X(¢) count individuals in a

population. Suppose each individual reproduces
at rate \, dividing into two individuals (think of
bacteria). Each individual dies at rate pu.

Construct an appropriate Markov model, and
hence find E[X (#)].
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Solution Continued
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Limiting probabilities, irreducibility,

stationary distributions and ergodicity

e If the embedded chain {X,,} is ergodic with
transition matrix P = [P;;] and
T, = Zj 7 Pji = lim;, ;o Pj; then results for

semi-Markov models give

P, Y lim P(t) = 2 /¥

t— 00 :Zkﬂ'k/yk

e In this case, if ) |, m /vy < oo then {X ()} is
said to be ergodic.

e {X(t)} is irreducible when { X, } is.

e A continuous time Markov chain is a non-lattice
semi-Markov model, so it has no concept of
periodicity. Thus { X (¢)} can be ergodic even if
{X,} is periodic. If {X,,} is periodic,
irreducible, and positive recurrent then 7 is its
unique stationary distribution (which does not
provide limiting probabilities for {X,,} due to
periodicity).
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e Setting 4 P(t) = 0 in the forward equation
suggests another way to calculate the stationary

distribution: P; is the unique solution to

> PiQi =0, >, P=1
Writing this out in full gives

viPj =% i 4 b,
which can be interpreted as “rate of leaving j”

“rate of entering j.”

If P[X(0) = j| = P;j, i.e. the chain is started in

it stationary distribution then

d

- PIX (1) = ZPPZJ ZP —Pij (1)
— ZPiQikij< ) =0,

i.e., {X ()} is then stationary.

e Note that (as for semi-Markov processes) long

run time averages equal limiting probabilities.
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Example: A small barbershop, operated by a
single barber, has waiting room for only one

customer. Potential customers arrive at a Poisson
rate of 3 per hr, and each service time is

independent, exponentially distributed with mean
1/4 hr. Find

(a) the average # of customers in the shop

(including customers currently being cut).

(b) the proportion of potential customers entering
the shop.
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Example continued
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Time Reversibility in Continuous Time

e Just as for discrete time, the reversed chain

(looking backwards) is a Markov chain.

e It is intuitively clear that the time spent in a
visit to state 7 is the same looking forwards as
backwards, i.e. Exponential (v;).

e Thus, to find the reverse chain we must only
find the transition probabilities of the reversed
embedded chain. If { X} is stationary and
ergodic, with transition matrix P = [P;;| and
stationary distribution 7, then the reverse chain

has transition matrix given by

P,;; :ijji/ﬂ-i (1)
This implies that the () matrix satisfies
Piqi; = Pjqji (2)

where ¢;; give the infinitesimal transition
probabilities for the reversed chain, and P; is the
stationary distribution of { X (%)}.
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e Why are (1) and (2) equivalent?
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e A stationary, ergodic Markov chain is time

reversible if quw = 17545 (3)

e Similar to the discrete time case, this means
“rate of going directly from 7 to j”

= “rate of going direclty from j to ¢”

e If { P;} is a probability distribution satisfying
(3), then {X ()} is reversible, with stationary
distribution {FP;}.

Example (A Stochastic Network). N customers

move among r servers. The service time at server
i is Exponential (u;). Following service, a
customer moves on to server j # ¢ with equal
probability 1/(r — 1). Let X (t)=(X1(¢), ..., X;-(t))
where X (t) counts customers at server k.
Customers wait in line until being served. Find
the limiting distribution of X (¢). Hint: employ

reversibility.

Solution
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Solution continued
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