5. Continuous-time Markov Chains

- Many processes one may wish to model occur in continuous time (e.g. disease transmission events, cell phone calls, mechanical component failure times, ...). A discrete-time approximation may or may not be adequate.
- {X(t), t ≥ 0} is a continuous-time Markov Chain if it is a stochastic process taking values on a finite or countable set, say 0, 1, 2, ..., with the Markov property that
 [X(t+s)=i | X(s)=i, X(u)=x(u) for 0 ≤ u ≤ s]

 $\mathbb{P}[X(t+s)=j \mid X(s)=i, X(u)=x(u) \text{ for } 0 \le u \le s]$ $= \mathbb{P}[X(t+s)=j \mid X(s)=i].$

• Here we consider **homogeneous** chains, meaning

 $\mathbb{P}[X(t+s)=j \mid X(s)=i] = \mathbb{P}[X(t)=j \mid X(0)=i]$

- Write $\{X_n, n \ge 0\}$ for the sequence of states that $\{X(t)\}$ arrives in, and let S_n be the corresponding arrival times. Set $X_n^A = S_n - S_{n-1}$.
- The Markov property for $\{X(t)\}$ implies the (discrete-time) Markov property for $\{X_n\}$, thus $\{X_n\}$ is an **embedded Markov chain**, with transition matrix $P = [P_{ij}]$.
- Similarly, the inter-arrival times $\{X_n^A\}$ must be conditionally independent given $\{X_n\}$. Why?

• Show that X_n^A has a memoryless property conditional on X_{n-1} , $\mathbb{P}[X_n^A > t + s | X_n^A > s, X_{n-1} = x] = \mathbb{P}[X_n^A > t | X_{n-1} = x]$ i.e., X_n^A is conditionally exponentially distributed given X_{n-1} . • We conclude that a continuous-time Markov chain is a special case of a semi-Markov process:

<u>Construction 1.</u> $\{X(t), t \ge 0\}$ is a continuous-time homogeneous Markov chain if it can be constructed from an embedded chain $\{X_n\}$ with transition matrix P_{ij} , with the duration of a **visit** to *i* having Exponential (ν_i) distribution.

• We assume $0 \leq \nu_i < \infty$ in order to rule out trivial situations with instantaneous visits.

• An alternative to Construction 1 is as follows: <u>Construction 2</u>

When X(t) arrives in state *i*, generate random variables having independent exponential distributions, $Y_j \sim \text{Exponential}(q_{ij})$ where $q_{ij} = \nu_i P_{ij}$ for $j \neq i$. Choose the next state to be $k = \arg \min_j Y_j$, and the time until the transition (i.e. the visit time in *i*) to be $\min_j Y_j$.

Why is this equivalent to Construction 1?
(i) check that P[next state is k] = P_{ik}

(ii) Check that $\min_j Y_j \sim \text{Exponential}(\nu_i)$.

We assume that Markov chains of interest are regular, meaning that the # of transitions in any finite length of time is finite with probability 1. A non-regular process is explosive. E.g., if an increasing chain takes time αⁿ to jump from n to n + 1, then the chain will reach infinity in a finite time, 1/(1 - α) for 0 < α < 1.

• We define $P_{ij}(t) = \mathbb{P}[X(t+s) = j | X(s) = i]$

<u>Lemma 1</u> (see Ross, Problem 5.8 with solution in the back)

- (i) $\lim_{t \to 0} \frac{1 P_{ii}(t)}{t} = \nu_i$
- (ii) $\lim_{t\to 0} \frac{P_{ij}(t)}{t} = q_{ij}$ for $j \neq i$
- This leads to another characterization of continuous Markov chains...

<u>Construction 3.</u> A continuous-time homogeneous Markov chain is determined by its infinitesimal transition probabilities:

 $P_{ij}(h) = hq_{ij} + o(h) \text{ for } j \neq 0$ $P_{ii}(h) = 1 - h\nu_i + o(h)$

- This can be used to simulate approximate sample paths by discretizing time into small intervals (the Euler method).
- The Markov property is equivalent to independent increments for a Poisson counting process (which is a continuous Markov chain).

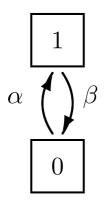
- Lemma 1 can be rewritten as $\frac{d}{dt}\gamma(t)|_{t=0} = \gamma(0) Q$ with $\gamma(t)$ a row vector, $\gamma_i(t) = \mathbb{P}[X(t) = i]$, and $Q_{ij} = q_{ij}$ for $i \neq j$ $Q_{ii} = -\nu_i = -\sum_{j\neq i} q_{ij}$
- this identity follows from definitions of γ(t) and
 P_{ij}(t), noting the necessary interchange of
 sum & limit.

Example. A population of size N has I_t infected individuals, S_t susceptible individuals and R_t recovered/removed individuals. New infections occur at rate $\beta I_t S_t$ and infected individuals become removed/recovered at rate γ , i.e. the overall rate of leaving the infected state is γI_t . Supposing the system is Markovian, what are the infinitesimal transition probabilities? <u>Theorem</u> (Kolmogorov's Backward Equation) $\frac{d}{dt}P_{ij}(t) = \sum_{k \neq i} q_{ik}P_{kj}(t) - \nu_i P_{ij}(t).$ Or, in matrix notation, with $P(t) = [P_{ij}(t)],$

 $\frac{d}{dt}P(t) = QP(t)$

• The backward equation can be used to find transition probabilities, since it has solution $P(t) = e^{Qt}$ [when this is well defined] where $e^{Qt} = \sum_{k=0}^{\infty} Q^k t^k / k!$

Example: For the two-state Markov chain, with rates α and β as shown, find $\mathbb{P}[X(t) = 0 \mid X(0) = 0].$



Example continued

• To sketch a proof of the backward equation, we first show

<u>Lemma 2</u>. $P_{ij}(t+s) = \sum_{k=0}^{\infty} P_{ik}(t) P_{kj}(s).$

Why is this true?

• Then take limits, identifying an issue of exchanging limits and summation but referring to Ross for the details.

• A rather subtly different result is

Kolmogorov's Forward Equation

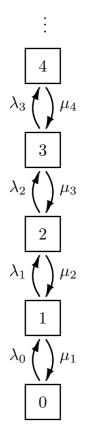
 $\frac{d}{dt}P_{ij}(t) = \sum_{k \neq j} q_{kj} P_{ik}(t) - \nu_j P_{ij}(t)$

Or, in matrix notation,

 $\frac{dP}{dt} = P(t) Q$

- This can be written as $\frac{d}{dt}\gamma(t) = \gamma(t)Q$ (Compare with comment on Lemma 1).
- Unfortunately, the forward equation requires regularity conditions to be true (the backward equation is generally true).
- For finite state chains, the forward equation always holds. It can be shown that the forward equation holds whenever $\sum_k P_{ik}(t)\nu_k < \infty$ for any *i* and *t*,

Example: The continuous-time birth and death process is as shown. For this model, the forward equation has a unique solution which also solves the backward equation (e.g., Grimmett & Stirzaker, *Probability and Random Pro*cesses). We show this for the pure birth process, with $\mu_i = 0$ for all *i*.



Example continued

Derivation of the Forward Equation

(identifying issues of exchanging summation & limits, but not attempting to fully resolve them).

- Perhaps the main use of the forward/backward equations is to show $P(t) = e^{Qt}$, assuming the (possibly infinite-dimensional) matrix exponential exists.
- The general method of deriving a differential equation can be used to find other quantities...

Example. Let X(t) count individuals in a population. Suppose each individual reproduces at rate λ , dividing into two individuals (think of bacteria). Each individual dies at rate μ . Construct an appropriate Markov model, and hence find $\mathbb{E}[X(t)]$. Solution Continued

Limiting probabilities, irreducibility,

stationary distributions and ergodicity

• If the embedded chain $\{X_n\}$ is ergodic with transition matrix $P = [P_{ij}]$ and $\pi_i = \sum_j \pi_j P_{ji} = \lim_{n \to \infty} P_{ji}^n$ then results for semi-Markov models give

$$P_j \stackrel{\text{def}}{=} \lim_{t \to \infty} P_{ij}(t) = \frac{\pi_j / \nu_j}{\sum_k \pi_k / \nu_k}$$

- In this case, if $\sum_k \pi_k / \nu_k < \infty$ then $\{X(t)\}$ is said to be **ergodic**.
- $\{X(t)\}$ is **irreducible** when $\{X_n\}$ is.
- A continuous time Markov chain is a non-lattice semi-Markov model, so it has no concept of periodicity. Thus {X(t)} can be ergodic even if {X_n} is periodic. If {X_n} is periodic, irreducible, and positive recurrent then π is its unique stationary distribution (which does not provide limiting probabilities for {X_n} due to periodicity).

• Setting $\frac{d}{dt}P(t) = 0$ in the forward equation suggests another way to calculate the stationary distribution: P_i is the unique solution to

 $\sum_{i} P_i Q_{ij} = 0, \qquad \sum_{i} P_i = 1$

Writing this out in full gives

 $\nu_j P_j = \sum_{j \neq i} q_{ij} P_i,$

which can be interpreted as "rate of leaving j" = "rate of entering j."

• If $\mathbb{P}[X(0) = j] = P_j$, i.e. the chain is started in it stationary distribution, then $\frac{d}{dt}\mathbb{P}[X(t) = j] = \frac{d}{dt}\sum_i P_i P_{ij}(t) = \sum_i P_i \frac{d}{dt} P_{ij}(t)$ $= \sum_{i,k} P_i Q_{ik} P_{kj}(t) = 0,$

i.e., $\{X(t)\}$ is then stationary.

• Note that (as for semi-Markov processes) long run time averages equal limiting probabilities. Example: A small barbershop, operated by a single barber, has waiting room for only one customer. Potential customers arrive at a Poisson rate of 3 per hr, and each service time is independent, exponentially distributed with mean 1/4 hr. Find

(a) the average # of customers in the shop(including customers currently being cut).

(b) the proportion of potential customers entering the shop.

Example continued

Time Reversibility in Continuous Time

- Just as for discrete time, the reversed chain (looking backwards) is a Markov chain.
- It is intuitively clear that the time spent in a visit to state i is the same looking forwards as backwards, i.e. Exponential (ν_i) .
- Thus, to find the reverse chain we must only find the transition probabilities of the reversed embedded chain. If $\{X_n\}$ is stationary and ergodic, with transition matrix $P = [P_{ij}]$ and stationary distribution π , then the reverse chain has transition matrix given by

$$P_{ij}^* = \pi_j P_{ji} / \pi_i \tag{1}$$

This implies that the Q matrix satisfies

$$P_i q_{ij}^* = P_j q_{ji} \tag{2}$$

where q_{ij}^* give the infinitesimal transition probabilities for the reversed chain, and P_i is the stationary distribution of $\{X(t)\}$. • Why are (1) and (2) equivalent?

- A stationary, ergodic Markov chain is **time** reversible if $P_i q_{ij} = P_j q_{ji}$ (3)
- Similar to the discrete time case, this means "rate of going directly from *i* to *j*"

= "rate of going directly from j to i"

If {P_i} is a probability distribution satisfying
(3), then {X(t)} is reversible, with stationary distribution {P_i}.

Example (A Stochastic Network). N customers move among r servers. The service time at server i is Exponential (μ_i) . Following service, a customer moves on to server $j \neq i$ with equal probability 1/(r-1). Let $X(t) = (X_1(t), ..., X_r(t))$ where $X_k(t)$ counts customers at server k. Customers wait in line until being served. Find the limiting distribution of X(t). Hint: employ reversibility.

Solution

Solution continued