
7. Brownian Motion & Diffusion Processes

• A continuous time stochastic process with

(almost surely) continuous sample paths which

has the Markov property is called a diffusion.

• “almost surely” means “with probability 1”,

and we usually assume all sample paths are

continuous.

• The simplest and most fundamental diffusion

process is Brownian motion {B(t)}, which is

sometimes called the Wiener process {W (t)}.

Definition 1. {B(t)} is Brownian motion if it is

a diffusion process satisfying

(i) B(0) = 0,

(ii) E
[

B(t)
]

= 0 and Var
[

B(t)
]

= σ2t,

(iii) {B(t)} has stationary, independent

increments.
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Applications of Diffusion Processes

• Many physical processes are continuous in space

and time. If all important variables are included

in the state of the system, then the future

evolution of the system should depend on the

current state, i.e., the system is Markovian.

• Any system with these properties is a diffusion,

by definition!

Examples: Molecular motion, stock market

fluctuations, communications systems,

neurophysiological processes.

• Discrete processes may be well approximated by

diffusions, in a limit as the discretization

becomes fine.

Examples: population growth models, disease

models, queuing models for large systems.
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Brownian Motion as a limit of random walks

• Einstein (1905) showed how the motion of

pollen particles in water (Brown, 1827) could be

explained by a random walk due to random

bombardment of the pollen by water molecules.

• Set X1, X2, ... iid with E[X1] = 0, Var(X1) = σ2.

Define B(n)(t) when t a multiple of 1/n by

B(n)(t) =
1√
n

nt
∑

i=1

Xi,

using linear interpolation to define B(n)(t)

between these times. Then,

• B(n)(0) = 0.

• E[B(n)(t)] = 0 and limn→∞ Var[B(n)(t)] = σ2t.

• {B(n)(t)} has stationary, independent

increments at the discrete times, t = k/n (and

hence, also, a discrete-time Markov property).

• {B(n)(t)} has continuous sample paths.

• One might expect Brownian motion in the limit

n → ∞. This was proved by Wiener (≈ 1915).
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• Now apply the central limit theorem to

B(n)(t)−B(n)(s):

Definition 2. {B(t)} is Brownian motion if

(i) B(0) = 0,

(ii) {B(t)} has stationary, independent

increments,

(iii) B(t) ∼ N
[

0, σ2t
]

.

• Note: independent increments imply the

Markov property.

• Note: it can be shown that Definition 2 implies

almost surely continuous sample paths.

• Note: continuous sample paths lead to Gaussian

increments much as counting processes lead to

Poisson increments.
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Hitting times and maximum of {B(t)}
• {B(t)} is symmetric, i.e., {−B(t)} is also

Brownian motion and P[B(t) > 0] = 1/2. This

has useful consequences, for example:

Proposition. P
[

max
0≤s≤t

B(s) ≥ a
]

= 2P
[

B(t) ≥ a
]

Proof

5



• Symmetry is also useful to study Z(t) = |B(t)|.
{Z(t)} is called reflected Brownian motion.

Why?

• Find P
[

Z(t) ≤ y
]

and hence E[Z(t)], Var[Z(t)].
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The joint distribution of Brownian motion

and its maximum

• Let M(t) = sup
0≤s≤t

B(s). Show that, for y ≥ x,

P
[

M(t)>y,B(t)<x
]

=

∫ ∞

2y−x

1√
2πt

exp
{

−u2

2t

}

du.
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Gaussian Processes and Gaussian Diffusions

• Y = (Y1, . . . , Yn) is multivariate normal if

Y = µ+AZ where µ is a vector in R
n, A is an

n×m matrix and Z = (Z1, . . . , Zm) is a random

vector of iid standard normal variables. We write

Y ∼ N
[

µ,AAT
]

where µ = E[Y ] and

AAT = Var(Y ) = E
[(

Y − E[Y ]
)(

Y − E[Y ]
)T ]

.

• {X(t), t ≥ 0} is a Gaussian process if

(X(t1), X(t2), . . . , X(tn)) is multivariate Normal

for all t1, . . . , tn.

• Since the multivariate normal distribution is

specified by its mean and covariance matrix, a

Gaussian process is specified by its mean

function µ(t) = E[X(t)] and covariance

function γ(s, t) = Cov(X(s), X(t))

• Gaussian processes are not usually diffusions.

Why?
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Brownian motion as a Gaussian process:
{B(t)} is a Gaussian process, from Definition 2.

Clearly, µ(t) = 0. Find γ(s, t).
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Conditioning a diffusion on its future value

• Let {X(t)} be a diffusion. Let {Z(t), 0 ≤ t ≤ 1}
correspond to X(t) conditioned on X(1) = α.

Show that {Z(t)} is a diffusion.

• Note that a homogeneous diffusion, where

the transition probabilities do not depend on

time, becomes inhomogeneous once

conditioned on a future value.
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Conditioning a Gaussian process on

its future value

• Let {X(t)} be a Gaussian process. Let

{Z(t), 0 ≤ t ≤ 1} correspond to {X(t)}
conditioned on X(1)=α. Show that {Z(t)} is a

Gaussian process.
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The Brownian bridge

Let {Z(t), 0 ≤ t ≤ 1}
have the distribution

of {B(t)} conditioned

on B(1)= 0, where

{B(t)} is standard

Brownian motion.

Then {Z(t)} is a

Brownian bridge.

• {Z(t)} is a Gaussian diffusion process. Find its

mean and covariance functions.

Solution
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Solution continued
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Another construction of the Brownian bridge

For {B(t)} standard Brownian motion, set

Z(t) = B(t)− tB(1). Show that {Z(t)} is a

Brownian bridge.

Solution
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An application of the Brownian bridge

• Suppose we suspect that X1, . . . , Xn ∼ iidG,

then U1, . . . , Un ∼ iidU [0, 1] for Ui = G(Xi).

Define Fn(s) =
1
n

∑n
i=1 I{Ui≤s}, called the

empirical distribution function.

• If it is true that

X1, . . . , Xn ∼ iid

G, then we expect

Fn(s) ≈ s.

• Fn(s)− s is like a random walk tied at s = 0 and

s = 1, so it may not be surprising that (suitably

rescaled) the limit is a Brownian motion tied at

s = 0 and s = 1, i.e. a Brownian bridge.

• It can be shown that
√
n
(

Fn(s)− s
)

converges

to a Brownian bridge. This gives the asymptotic

distribution for the Kolmogorov-Smirnov

statistic
√
n sups |Fn(s)− s| to test whether

X1, . . . , Xn ∼ iidG.
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R code for a Brownian bridge

np=1000

t=seq(from=0,to=1,length=np)

X=cumsum(rnorm(np,mean=0,sd=sqrt(1/np)))

Z=X-t*X[np]

plot(t,Z,type="l")

abline(h=0,lty="dashed")

R code for the empirical cdf

np=25

t=seq(np)/np

U=runif(np)

F=sort(U)

plot(x=c(0,rep(t,each=2),1,1),

y=c(0,0,rep(F,each=2),1),

xlab=’s’,

ylab=expression(paste(F[n],"(s)")),

ty="l")

lines(c(0,1),c(0,1),lty="dashed")
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Transition density of Brownian motion

• The conditional distribution function

F (y, t |x, s) = P
[

B(t) ≤ y |B(s)=x
]

has corresponding density (for σ2 = 1) of

f(y, t |x, s) = 1√
2π(t−s)

exp
{

− (y−x)2

2(t−s)

}

.

• The forward equation is ∂f
∂t = 1

2
∂2f
∂y2

Check this.

• The forward equation is the heat equation in

physics, with f(y, t) giving the temperature at

location y along a uniform metal bar at time t.

The initial conditions for this solution correspond

to a pulse of heat injected at x at time s < t.
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• The backward equation for standard

Brownian motion is ∂f
∂s = − 1

2
∂2f
∂x2

• We can derive similar equations for general

diffusion {X(t)}. It turns out that the forward

and backward equations only depend on the

infinitesimal mean or drift

µ(x, t) = lim
δt→0

E
[

X(t+ δt)−X(t) |X(t)=x
]

δt

and the infinitesimal variance

σ2(x, t) = lim
δt→0

E
[(

X(t+ δt)−X(t)
)2 |X(t)=x

]

δt
.

• Assuming sufficient regularity for the above

limits to exist and for the forward and backward

equations to have a unique solution (subject to

appropriate boundary conditions), a diffusion

is fully specified by its infinitesimal mean

and variance
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Transition densities for general diffusions

• Let {X(t)} be a diffusion with infinitesimal

mean µ(x, t) and infinitesimal variance σ2(x, t).

Assuming sufficient regularity, the transition

density f(y, t |x, s) of X(t) given X(s)=x

satisfies the backward equation,

∂f
∂s = −µ(x, s)∂f∂x − 1

2σ
2(x, s)∂

2f
∂x2 ,

and the forward equation,

∂f
∂t = − ∂

∂y [µ(y, t)f ] +
1
2

∂2

∂y2 [σ
2(y, t)f ].

• These equations may have explicit solutions in

simple cases (e.g., Gaussian diffusions) and can

be solved numerically in other cases.

• The method of constructing a differential

equation (often by conditioning and taking a

limit) is also useful in other situations, e.g., for

hitting probabilities and expected hitting times.
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The backward equation can be derived based on

the identity

f(y, t |x, s) = E
[

f
(

y, t |X(s+ h), s+ h
)

|X(s)=x
]

followed by a Taylor series expansion about h = 0.

Solution
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Example. Calculate the infinitesimal mean and

variance for a Brownian bridge, i.e., a Gaussian

diffusion {Z(t), 0 ≤ t ≤ 1} with E[Z(t)] = 0 and

Cov(Z(s), Z(t)) = s ∧ t− st.
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• Since a diffusion is specified by its infinitesimal

parameters (plus boundary conditions), these

give a useful description of the process.

µ(x, t) σ2(x, t)

Brownian Motion 0 σ2

Standard Brownian Motion 0 1

Brownian Motion with Drift µ σ2

Brownian Bridge − x

1− t
1

Ornstein-Uhlenbeck Process −αx σ2

Branching Process αx β x

Reflected Brownian Motion 0 σ2

• Here, α > 0 and β > 0. The branching process

is a diffusion approximation based on matching

moments to the Galton-Watson process.

• Locally in space and time, the infinitesimal

mean & variance are approximately constant, so

all diffusions look locally like Brownian motion

with drift (except for boundary behavior).
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Martingales to Study Brownian Motion

• Since martingale arguments are useful for

random walks, we expect them to help for the

continuous time analog, i.e., Brownian motion.

• We assume that the stopping theorem also

applies in continuous time.

(a) Note that B(t) is itself a martingale.

(b) [B(t)]2 − t is a martingale. Why?
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(c) exp{cB(t)− c2t/2} is a martingale for any c.

Why?
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Hitting Times for Brownian Motion

with Drift

• X(t) = B(t) + µt is called Brownian motion

with drift. Here, we take {B(t)} to be standard

Brownian motion, σ2 = 1.

• Let T = min {t : X(t) = A or X(t) = −B}. The
random walk analog of T was important for

queuing and insurance ruin problems, so T is

important if such processes are modeled as

diffusions.

• (i) X(t)− µt is a martingale.

Also, exp
{

c(X(t)− µt)− c2t/2
}

is a martingale.

Taking c = −2µ gives

(ii) exp{−2µX(t)} is a martingale.

• We can use (i) and (ii) to find E
[

T
]

and

P
[

X(T )=A
]

via the martingale stopping

theorem.
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• Because of continuous sample paths, there is no

issue of overshoot or undershoot. Unlike the

random walk case, the Martingale solution is

exact.
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• E(T ) and P[X(T )=A] can also be calculated by

setting up & solving appropriate differential

equations (see Ross, Section 8.4).

• Also, these quantities can be found by taking a

limit of random walks. Let Y1, Y2, . . . be iid with

E[Yi] = 0, Var(Yi) = 1 and let

X [n](t) = 1√
n

∑nt
i=1(Yi +

µ√
n
) for t = k/n, using

linear interpolation for t 6= k/n.

• The random walk converges to a diffusion

process, and we can check the infinitesimal mean

and variance of the limit to show that X [n](t)

converges in distribution to Brownian motion

with drift, X(t).

• Let X
[n]
k = 1√

n

∑k
i=1

(

Yi +
µ√
n

)

and let

T [n] = min
{

k : X
[n]
k ≥ A or X

[n]
k ≤ −B

}

.

Then,

E
[

T
]

= limn→∞ E
[

T [n]
]/

n

and

P
[

X(T )=A
]

= limn→∞ P[X
[n])

T [n] ≥ A],

assuming the excess is neglibible in the limit.
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• Our previous results for the random walk are

P
[

X
[n]

T [n] ≥ A
]

= PA ≈ 1− e−θnB

eθnA − e−θnB

E
[

T [n]
]

≈ APA −B(1− PA)

E
[

1√
n
(Y1 +

µ√
n
)
]

• Show that θn = −2µ+ o(1), i.e., limn θn = −2µ

• Completing this calculation is one way to do

Problem 8.15(c) in Ross.
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Diffusions as solutions to

Stochastic Differential Equations

• The local properties of {X(t)} suggest that we

can write

X(t+h) = X(t) + µ
(

X(t), t
)

h +

σ
(

X(t), t
)[

B(t+h)−B(t)
]

+ o(h).

• Dividing by h and taking a limit suggests

d
dtX(t) = µ

(

X(t), t
)

+ σ
(

X(t), t
)

d
dtB(t).

• But this derivative is not defined, in the usual

sense, since sample paths of B(t) are not

differentiable. Why?
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• To recognize the lack of differentiability, we

write dX(t) = µ(X(t), t) dt+ σ(X(t), t) dB(t).

The solution to this stochastic differential

equation (SDE) corresponds to a stochastic

integral equation,

X(t) = X(0)+

∫ t

0

{

µ(X(s), s)ds+σ(X(s), s)dB(s)
}

.

• A stochastic integral can be defined analogously

to the Riemannn integral:
∫ t

0

f(s) dB(s) = lim
N→∞

N−1
∑

n=0

f
(

tn
N

)

[

B
( t(n+1)

N

)

−B
(

tn
N

)

]

.

• We note some stochastic calculus results:

Supposing f(s) is sufficiently regular and f(s) is

independent of {B(t), t ≥ s},

(i)
∫ t

0
f(s) dB(s) has continuous sample paths.

(ii) E
[ ∫ t

0
f(s) dB(s)

]

= 0. .

(iii) Var
[ ∫ t

0
f(s) dB(s)

]

= E
[ ∫ t

0
[f(s)]2 ds

]

.

(iv) Cov
[ ∫ t

0
f(s) dB(s),

∫ t

0
g(s) dB(s)

]

= E
[ ∫ t

0
f(s) g(s) ds

]

.
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• We can use these properties to check that the

solution to

dX(t) = µ
(

X(t), t
)

dt+ σ
(

X(t), t
)

dB(t)

is a diffusion with infinitesimal parameters

µ(x, t) and σ2(x, t).

Solution
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Transformations of Diffusions

• If {X(t)} is a time-homogeneous diffusion with

infinitesimal parameters µX(x) and σ2
X(x), then

Y (t) = f(X(t)) is also a time-homogeneous

diffusion if f is invertible and continous. Why?

• Supposing f(x) is twice differentiable, the

infinitesimal parameters of Y (t) are

µY (y) = µX(x)f ′(x) + 1
2σ

2
X(x)f ′′(x)

σ2
Y (y) = σ2

X(x)[f ′(x)]2

where x = f−1(y), f ′ = df
dx , f

′′ = d2f
dx2 .

• This transformation formula is different from

the non-stochastic “chain rule” for y = f(x),

namely dy
dt = df

dx
dx
dt . In SDE notation,

dY (t) = df
dx dX(t) + 1

2σ
2
X

d2f
dx2 dt.
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Derivation of the transformation formula.
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Ornstein-Uhlenbeck process (O-U process)

• If a small particle is suspended in a liquid or

gas, then bombardment by molecules of the

medium should (by Newton’s laws) make the

velocity follow a random walk. However, the

particule also suffers friction (viscous drag)

which is approximately proportional to velocity.

This suggests an equation

dv(t) = −αv(t) dt+ σ dB(t)

with location then given by

x(t) = x(0) +
∫ t

0
v(s) ds,

which is equivalent to

dx(t) = v(t) dt.

• The Ornstein-Uhlenbeck process is a

diffusion on [−∞,∞] with infinitesimal

parameters µ(x, t) = −αx and σ2(x, t) = σ2.
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• Let X(t) = e−αtX(0) +
∫ t

0
σe−α(t−s) dB(s).

Assuming that differentiation of stochastic

integrals follows the same rules as standard

deterministic integrals, show that X(t) is an O-U

process.

• This integral shows that the O-U process is a

linear function of Brownian motion, and so the

O-U process is a Gaussian process. (as long as

X(0) has a normal distribution).
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• Find the mean and covariance functions for the

O-U process using the integral representation

and the properties (ii) and (iv) of stochastic

integrals. Suppose X(t) is stationary, so that

X(t) =
∫ t

−∞ σe−α(t−s) dB(s).

• Note: Another way to do this is to use the

representation X(t) = σ e−αt/2 B(αeαt) where

{B(t)} is standard Brownian motion (see

homework).
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Exponential Brownian Motion

• Let Y (t) = exp {σB(t) + µt}. This diffusion
model is widely used in modeling the financial

markets and population growth.

• Find the infitiesimal parameters for {Y (t)} and

write down the SDE that it solves.
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Diffusion approximation to a branching process

• Let X(t) be a branching process where each

individual reproduces at rate λ. Find a diffusion

approximation for large values of X(t).
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