
6. Martingales

• For casino gamblers, a martingale is a betting

strategy where (at even odds) the stake doubled

each time the player loses. Players follow this

strategy because, since they will eventually win,

they argue they are guaranteed to make money!

• A stochastic process {Zn, n ≥ 1} is a

martingale if E
[

|Zn|
]

< ∞ and

E
[

Zn+1 |Z1, . . . , Zn

]

= Zn.

• Think of Zn+1 as being a gambler’s earnings

after n+ 1 games. If the game if fair, then

E
[

Zn+1 |Zn

]

= Zn. This is true whatever stake

the gambler places-the stake at game n+ 1 can

depend on Z1, . . . , Zn.

• We will show that no strategy can guarantee

success at a fair game. This is a generalization of

Wald’s equation.
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• Since martingales can have rather general

dependence (the only constraint is an conditional

expectations), they are a powerful tool for

dependent stochastic processes.

• Identifying an embedded martingale can lead to

elegant solutions.

Examples

(i) Suppose X1, X2, . . . are iid, mean µ. Then

Zn =
∑n

i=1(Xi − µ) is a Martingale. Why?

(ii) Product martingale. If X1, X2, . . . are iid

with mean 1, then Zn =
∏n

i=1 Xi is a martingale.

Why?
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(iii) Martingale differences. Let X1, X2, . . . be

arbitrary dependent random variables with

E
[

|Xi|
]

< ∞ and E
[

Xk |X1, . . . , Xk−1

]

= 0.

Then Zn =
∑n

i=1 Xi is a martingale. Why?

• Correspondingly, for any martingale {Zn} we

can construct martingale differences

Xk = Zk − Zk−1

• In particular, for any sequence X1, X2, . . .,

Zn =
∑n

i=1

{

Xi − E
[

Xi |X1, . . . Xi−1

]}

is a

martingale. Why?
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(iv) Let E
[

|X|
]

< ∞ and take Y1, Y2, . . . to be

arbitrary random variables. Set

Zn = E
[

X |Y1, . . . , Yn

]

. Then Zn is a Martingale.

Why?

(v) Continuous-time martingales. Z(t) is a

martingale in continuous time if E
[

|Z(t)|
]

< ∞

and E
[

Z(t) |Z(u), 0 ≤ u ≤ s
]

= Z(s) for s < t.

We will not study the continuous time case

thoroughly, but similar results apply.

• If N(t) is a rate λ Poisson counting process,

Z(t) = N(t)− λt is a martingale.
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• If N(t) is a general renewal process, then

N(t)−m(t) is not a Martingale. Why? Find a

related process which is a Martingale.

• Identify a Martingale corresponding to a

continuous time birth-death process, X(t), with

rates λn and µn.
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• Recall that a non-negative integer-valued

random variable N is a stopping time for

{Zn, n ≥ 1} if {N = n} is determined by

Z1, . . . , Zn.

• Here, we do not require E[N ] < ∞.

• More generally, if we allow the possibility that

P
[

N=∞
]

> 0, N is a random time.

• The stopped process
{

Zn, n ≥ 1
}

is given by

Zn =







Zn if n ≤ N

ZN if n > N

•
{

Zn

}

inherits the martingale property from

{Zn}. Why?
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Solution continued
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Theorem (Martingale Stopping Theorem)

If N is a stopping time for a martingale {Zn}

then E
[

ZN

]

= E
[

Z1

]

, provided one of the

following conditions is satisfied:

(i) Zn is uniformly bounded (i.e., there exist a

and b with a< Zn<b whenever n ≤ N).

(ii) N is bounded.

(iii) E[N ] < ∞ and, for some M < ∞,

E
[

|Zn+1 − Zn|
∣

∣Z1, . . . , Zn

]

< M .

Proof
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Example: What does the stopping theorem

imply about the “martingale” betting strategy

(keep doubling the stakes until you win, then

eventually you are guaranteed to make a profit).

Example: A gambler plays a fair game at even

odds, each play results in winning/losing $1 with

probability 1/2. The gambler starts with $ a and

stops when he goes broke or reaches $ b. Find the

chance of reaching $ b.
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Example: Expected time to see a given pattern.

A monkey hits random letters on a keyboard.

What is the expected number of hits until typing

ABRACADABRA.

Solution
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Convergence of Martingales

• A useful property of martingales is that, if their

expected absolute value is uniformly bounded,

they converge with probability 1.

• To develop these ideas, we first study some

inequalities.

Definition If {Zn, n ≥ 1} is a stochastic process

with E
[

|Zn|
]

< ∞ then it is a

submartingale if E
[

Zn+1 |Z1, . . . , Zn

]

≥ Zn

supermartingale if E
[

Zn+1 |Z1, . . . , Zn

]

≤ Zn

• Most casino games are super martingales, as far

as the player is concerned, i.e., subfair. Allegedly,

there are systems to make the player’s winnings

at blackjack a submartingale, i.e., superfair.

• Note that the definition implies

E
[

Zn+1

]

≥ E
[

Zn

]

for a submartingale.

E
[

Zn+1

]

≤ E
[

Zn

]

for a supermartingale.
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Example: If f is a convex function and {Zn} is

a martingale, then {f(Zn)} is a submartingale.

Proof. We need to use Jensen’s inequality: If

f is a convex function, then E[f(X)] ≥ f(E[X]).
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Stopping for Sub(Super) Martingales

If N is a stopping time for {Zn} satisfying any of

the conditions for the martingale stopping

theorem,

E
[

ZN

]

≥ E
[

Z1

]

for a submartingale

E
[

ZN

]

≤ E
[

Z1

]

for a supermartingale







(1)

If furthermore, N is bounded, say N ≤ n, then

E
[

Zn

]

≥ E
[

ZN

]

≥ E
[

Z1

]

submartingale

E
[

Zn

]

≤ E
[

ZN

]

≤ E
[

Z1

]

supermartingale







(2)

Proof. For the submartingale case, how does (1)

follow from the martingale stopping theorem?

How does (2) follow from (1)?
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Proof continued

14



Kolmogorov’s submartingale inequality

If {Zn} is a non-negative submartingale, then

P
[

max(Z1, . . . , Zn) ≥ a
]

≤ E[Zn]
a

for a > 0.

• Note that Jensen’s inequality then gives, for any

martingale {Zn},

P
[

max( |Z1| , . . . , |Zn| ) ≥ a
]

≤ E
[

|Zn|
]/

a

and

P
[

max( |Z1| , . . . , |Zn| ) ≥ a
]

≤ E
[

Z2
n

]/

a2.

Proof of the submartingale inequality
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Example: An urn initially contains one white

and one black ball. At each stage a ball is drawn,

and is then replaced in the urn along with another

ball of the same color. Let Zn be the fraction of

white balls in the urn after the nth iteration.

(a) Show that {Zn} is a martingale.

(b) Show that the probability that the fraction of

white balls is ever as large as 3/4 is at most 2/3.
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Martingale Convergence Theorem

If {Zn, n ≥ 1} is a martingale and E
[

|Zn|
]

≤ M

then, with probability 1, limn→∞ Zn exists and is

finite.

• Note: write Z∞ = limn→∞ Zn. This limit is

generally random, but Z∞ may sometimes be a

constant. This theorem asserts that for (almost)

every outcome s in the sample space S,

limn→∞ Zn(s) = Z∞(s).

• Note that the theorem applies to any

non-negative martingale, since then

E
[

|Zn|
]

= E[Zn] = E[Z1].

Proof
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Proof continued
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Example: Let {Zn, n ≥ 1} be a sequence of

random variables such that Z1 = 1 and, given

Z1, . . . , Zn−1, the distribution of Zn is

conditionally Poisson with mean Zn−1 for n > 1.

What happens to Zn as n gets large?
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Example: Let Xn be the population size of the

nth generation of a branching process, with each

individual having, on average, m offspring.

Describe the behavior of Xn for large n.
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Martingales to Analyze Random Walks

• The general random walk, {Sn, n ≥ 0}, is

defined by S0 = 0 and Sn =
∑n

i=1 Xi for n > 0,

where X1, X2, . . . are iid.

• A random walk can be considered as a

generalization of a renewal process, where we

drop the requirement that Xi ≥ 0.

• The most obvious martingale is Sn − nµ where

µ = E[X1]. Here, µ is called the drift.

• Another useful martingale is exp {θSn} where θ

solves E[eθX1 ] = 1. This equation has one

solution at θ = 0, and it usually has exactly one

other solution, with θ > 0, if E[X1] < 0. Why?
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Example: Let N= min {n : Sn≥A or Sn≤−B}.

Use martingale arguments to find (approximately)

P[SN ≥ A] and E[N ].

• Note: this models a general situation where we

accumulate rewards, and at some point we quit

and declare failure (if SN ≤ −B), or quit having

achieved our goal (if SN ≥ A). An example is

sequential analysis of clinical trails.

Solution
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Solution continued
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