
2. The Poisson Process

A counting process {N(t), t ≥ 0} is a Poisson

process with rate λ if . . .

Definition 1.

(i) N(0) = 0,

(ii) N(t) has independent increments,

(iii) N(t)−N(s) ∼ Poisson (λ(t− s)) for s < t.

This can be shown to be equivalent to

Definition 2.

(i) N(0) = 0,

(ii) N(t) has stationary independent increments,

(iii) P (N(h) = 1) = λh+ o(h),

(iv) P (N(h) ≥ 2) = o(h).

f(h) = o(h) means limh→0
f(h)
h

= 0

• Definition 1 is good for explicit calculations

with Poisson processes. Definition 2 is useful for

showing whether a process of interest is a

Poisson process.
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To Show Definition 2 Implies Definition 1

• We need only to show that Definition 2 implies

N(t) ∼ Poisson (λt). We divide [0, t] into n equal

subintervals and define

Xnk =







1 if N
(

k t/n
)

−N
(

(k − 1) t/n
)

≥ 1

0 else

Then set Xn =
∑n

k=1 Xnk, so Xn counts the

number of subintervals with at least one event.

• We aim to show that

(a) limn→∞ P [Xn = N(t)] = 1, i.e. for

sufficiently large n there is only ever 0 or 1 event

per subinterval.

(b) limn→∞ P [Xn = k] = (λt)ke−λt/k!

• (a) and (b) together imply N(t) ∼ Poisson (λt).

Note: Ross uses a rather different proof—see

Theorem 2.1.1.

Proof
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Proof continued
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Interarrival and Waiting Times

• Let X1, X2, . . . be iid Exponential (λ) variables.

Define Sn =
∑n

i=1 Xi and S0 = 0. Set

N(t) = max {n : Sn ≤ t}. Then N(t) is a

counting process which increases by one at times

S1, S2, . . .

• Sn is the nth arrival time, or the waiting

time until the nth event. X1, X2, . . . are the

interarrival times.

Definition 3. N(t) constructed as above is a

Poisson process of rate λ.
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• Note that {N(t) ≥ n} = {Sn ≤ t}. Why?

Which of the following are true?

(a) {N(t) < n} = {Sn > t}

(b) {N(t) ≤ n} = {Sn ≥ t}

(c) {N(t) > n} = {Sn < t}

Definition 1 ⇒ Definition 3

(i) Show that P [X1 > t] = e−λt.
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(ii) Show that P [X2 > t|X1 = s] = e−λt.

(iii) Repeating the same argument inductively

gives Definition 3.

Definition 3 ⇒ Definition 2

• The tricky thing is to show that Definition 3

implies stationary, independent increments. This

follows from the memoryless property. . ..

proof
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proof continued
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Example (Conditional Arrival Times)

If N(t) is a rate λ Poisson process then,

conditional on N(t) = n, the arrival times

S1, . . . , Sn have the same distribution as

U(1), . . . , U(n), the order statistics for

U1, . . . , Un ∼ iidU [0, t].

• From a previous example, this implies that,

conditional on N(t) = n, Sk = tBk where

Bk ∼ Beta (k, n− k + 1).

• Conditional on N(t) = 1, S1 ∼ U [0, t].

• The rate λ is seen to be irrelevant once one

conditions on N(t) = n.

Proof
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proof continued
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Example (A Reward Process)

Suppose events occur as a Poisson process, rate λ.

Each event Sk leads to a reward Xk which is an

independent draw from Fs(x) conditional on

Sk=s. The total reward at t is R =
∑N(t)

k=1 Xk.

Show that R has the same distribution as
∑N(t)

k=1 Yk where Y1, Y2, . . . are suitable

independent random variables and use this to find

E[R] and Var(R).

• Note: X1, X2, . . . are not independent, since

S1, S2, . . . are not independent. They are

conditionally independent, given S1, S2, . . .

(what does this mean?)

Solution
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Solution continued
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Examples of Counting Processes

• Queues. Individuals arrive randomly and wait

for service. E.g., customers at a store, parts in

an assembly line, telephone calls at an exchange,

cellular telephone calls at an antenna, internet

packets at a router.

• Networks. Individuals move round a network

of connected notes. Counting processes keep

track of their locations. Each mode may be

modeled by a queue. E.g., internet networks,

social networks—individuals infected with a

disease move around, contacting friends and

colleagues.
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• Populations Birth/death processes and

predator/prey models, e.g. survival of

endangered species.

• Genetics. Mutations arise randomly during

reproduction. Thus harmless mutations may

occur as a Poisson process (with “time” being

length along the genome). For disease

inheritance, cross-over events when parental

chromosomes are combined during reproduction

are important—these also occur as

(approximately) a Poisson process along the

genome.
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Some Terminology for Queues

• M/M/1 queue:

Exponential arrival

intervals (M for Markov),

M✲ ✲
M

i.e., arrivals are a Poisson process. Service times

are independent and Exponential. Arrivals wait

until the server is available, and they are served

in order of arrival. What is the mean waiting

time? The distribution of wait times?

• M/G/1 queue: Markov arrivals, general service

time, 1 server.

• G/M/1 queue: General inter-arrival

distribution, Exponential Service times, 1 server.

• M/G/∞ Markov arrivals are immediately

attended by a server, with general service time

distribution.
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Nonhomogeneous Poisson Processes

A counting process {N(t), t ≥ 0} is a

nonhomogeneous Poisson process with rate λ(t) if:

Definition 1.

(i) N(0) = 0.

(ii) N(t) has independent increments.

(iii) N(t)−N(s) ∼ Poisson
(

∫ t

s
λ(u) du

)

.

Definition 2.

(i) N(0) = 0.

(ii) N(t) has independent increments.

(iii) P [N(t+ h)−N(t) = 1] = hλ(t) + o(h)

(iv) P [N(t+ h)−N(t) ≥ 2] = o(h)

Definition 3. Setting Sn =
∑n

k=1 Xk to define

the inter-arrival and arrival times, Xn+1 is

conditionally independent of X1, . . . , Xn given Sn,

and has a distribution given by

P [Xn+1 > t|Sn = s] = exp
{

−
∫ s+t

s
λ(u) du

}

.
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Example (Splitting a Poisson Process)

Let {N(t)} be a Poisson process, rate λ. Suppose

that each event is randomly assigned into one of

two classes, with time-varing probabilities p1(t)

and p2(t). Each assignment is independent. Let

{N1(t)} and {N2(t)} be the counting process for

events of each class. Then {N1(t)} and {N2(t)}

are independent nonhomogenous Poisson

processes with rates λp1(t) and λp2(t).

• note: the independence is surprising, since the

assignment of events appears to introduce

dependence.

(i) show that {N1(t)} and {N2(t)} satisfy

Definition 2, with the required rates.
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(ii) Use a partitioning method to argue that

{N1(t)} and {N2(t)} have the same joint

probabilities as two independent Poisson

processes.
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Example (Rescaling Time)

For {N(t)} a nonhomogeneous Poisson process

with rate λ(t), set m(t) =
∫ t

0
λ(s) ds and define

N∗(t) = N(m−1(t)). Show that {N∗(t)} is a

Poisson process with rate 1.

18


